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Abstract: This work is devoted to the study of a class of fractional boundary value problems using
(left) Caputo derivative, and with the particularity of being resonant, i.e., the associated homogeneous
problem admits a nontrivial solution. Conditions to ensure the existence and uniqueness of solutions
are presented. Using Mawhin’s coincidence degree, it is shown that the problem under consideration
admits solutions and applying Banach contraction principle, sufficient conditions are obtained for
which the solution is unique.
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1. Introduction

Although Fractional Calculus has its origins in 1695, with a letter between Leibniz and
L’Hôpital, it is only in the last decades that scientific interest in this area of mathematics has
become evident. This is largely due to its many applications in some fields of engineering,
biology, physics and mechanics (cf. [1–3]).

Obtaining analytical solutions in these type of problems is a very difficult issue. In
this sense, there is a need to study if the solutions exist or not and if so, to analyse if there
is uniqueness or not. Several methods are identified in the literature, from fixed point
theorems, integral inequalities, the coincidence degree of Mawhin, etc. (see e.g., [4–13]).

Continuing the results presented in [14], in this paper, it is considered a class of
boundary value problem of fractional order with (left) Caputo fractional derivative{ CDα

a+x(t)− f (t, x(t), x′(t), x′′(t)) = 0, t ∈ [a, b],
x(a)− βx′(a) = 0, x′(a) = x′(b) = ϑ, x′′(a) = 0,

(1)

where β, ϑ ∈ R, 0 ≤ a < b, 2 < α < 3 and f : [a, b]×R3 → R is continuous. To obtain
sufficient conditions to ensure the existence of solutions, the coincidence degree due to
Mawhin is applied. The problem can be transformed into an equation of type Lx = Nx,
with L being a linear operator between Banach spaces and N being the nonlinear part.
Under that choice of boundary conditions, L is a not invertible (KerL ≥ 1), i.e., the problem
is resonant. A more detailed approach can be found in [14]. Once the existence of solutions
is guaranteed, we will proceed to the study of uniqueness.

2. Auxiliary Material and Methods

In this section, some essential definitions and methods are presented.
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Definition 1. The (left) Riemann-Liouville fractional integral of order α ∈ R+ of a function x is
defined by

Iα
a+x(t) =

1
Γ(α)

∫ t

a
(t− s)α−1x(s)ds,

admitting that the right-hand side is pointwise defined on (a, ∞), and with Γ being Euler Gamma
function (Γ(α) =

∫ ∞
0 tα−1e−tdt, α > 0).

Definition 2. The (left) Caputo fractional derivative of order α > 0 of a continuous function x is
defined by

CDα
a+x(t) =

1
Γ(n− α)

∫ t

a

x(n)(s)
(t− s)α−n+1 ds,

with the right-hand side being pointwise defined on (a, ∞), and n− 1 < α < n, n ∈ N.

Lemma 1 ([1]). Let n− 1 < α < n, n ∈ N. If x ∈ Cn−1([a, b]), then it holds:

(Iα
a+

CDα
a+x)(t) = x(t)−

n−1

∑
k=0

x(k)(a)
k!

(t− a)k. (2)

The following lemma is of great importance in Functional Analysis, and an essential
tool in the proof of uniqueness and solutions.

Theorem 1 (Banach contraction principle). Let (X, d) be a Banach space and let T : X → X be
a contraction operator on X. Then, T has a unique fixed point x ∈ X.

Mawhin’s Coincidence Theory

Let X and Y be two normed spaces. In order to present Mawhin’s coincidence theory,
let us recall an important concepts.

A linear operator L : domL ⊂ X → Y is said to be a Fredholm operator with Fredholm
index zero if ImL is a closed subset of Y and dim KerL = codimImL < ∞. If L is a Fredholm
and its Fredholm index is zero, then there exist continuous projectors P : X → X, Q : Y → Y
such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ.

Moreover, L|dom L∩ker P : dom L ∩ ker P→ Im L is an isomorphism.

Definition 3. Let Λ be an open bounded subset of X with domL∩Λ 6= ∅. It is said that mapping
N is L-compact on Λ if QN(Λ) is bounded and Kp(I −Q)N : Λ→ X is completely continuous.

We can present now the Mahwin’s Theorem, which allows us to study the existence of
solutions for the equation Lx = Nx.

Theorem 2 ([6]). Let Λ ⊂ X be open and bounded. Admit L i a Fredholm operator with Fredholm
index zero and N(Λ) is L-compact. Suppose that:

(i) Lx 6= λNx for every x ∈ ∂Λ ∩ (domL\KerL) and λ ∈ (0, 1);
(ii) Nx /∈ Im L for every x ∈ KerL ∩ ∂Λ;
(iii) deg(QN|KerL, Λ ∩KerL, 0) 6= 0, where Q : Y → Y is a projection such that ImL = KerQ.

Then the equation Lx = Nx has at least one solution in dom L ∩Λ.

In what follows, let X = C2([a, b]) with the habitual norm

‖x‖C2 = max
t∈[a,b]

{‖x‖∞ + ‖x′‖∞ + ‖x′′‖∞}
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and Y = C([a, b]) with the norm ‖y‖C = ‖y‖∞, where ‖x‖∞ = maxt∈[a,b] |x(t)|. It is known
that X and Y, considered with such norms, are Banach spaces.

3. Main Results

In what follows, it is applied the method presented in the last section is used. To that
purpose, consider the operator L : domL ⊂ C2([a, b])→ C([a, b]) defined by

(Lx)(t) = (CDα
a+x)(t), t ∈ [a, b], (3)

where

domL={x ∈ C2([a, b]) : (CDα
a+x)(t) ∈ Y, x(a)=βx′(a), x′(a)= x′(b) = ϑ, x′′(a)=0}.

Let N : C2([a, b])→ C([a, b]) be the operator

(Nx)(t) = f (t, x(t), x′(t), x′′(t)), t ∈ [a, b]. (4)

Thus, the fractional boundary value problem (1) can be rewritten in the form:

Lx = Nx, x ∈ domL, (5)

(cf. [14]). Note that applying L−1 = Iα
a to both members of Equation (5), using boundary

conditions (presented in (1)) and applying Lemma 1, it yields that

x(t) = βϑ + ϑ(t− a) + Iα
a (Nx)(t). (6)

With some computations, it permit us to conclude that

KerL = {x ∈ C2([a, b]) : x(t) = ϑ(t− a + β), t ∈ [a, b]},

ImL =

{
y ∈ C([a, b]) :

∫ b

a
(b− s)α−2y(s)ds = 0

}
.

Moreover, it is proved in [14] that L is a Fredholm operator of index zero (cf. [14]), and the
linear continuous projectors P : C2([a, b])→ C2([a, b]) and Q : C([a, b])→ C([a, b]) can be
defined as

(Px)(t) = ϑ(t− a + β),

(Qy)(t) =
α− 1

(b− a)α−1

∫ b

a
(b− s)α−2y(s)ds, t ∈ [a, b].

In order to conclude that the problem under study admit solutions, assume the
following assertions:

(H1) There exist nonnegative constants p1, p2, p3 and q such that

| f (t, x, y, z)| ≤ p1|x(t)|+ p2|y(t)|+ p3|z(t)|+ q, t ∈ [a, b].

for any (x, y, z) ∈ R3, and so that η · p∗ < 1, with

η =
(b− a)α

Γ(α + 1)
+

(b− a)α−1

Γ(α)
+

(b− a)α−2

Γ(α− 1)
(7)

and p∗ = maxt∈[a,b]{p1, p2, p3}.
(H2) There exists a positive constant R such that for x ∈ domL, if |x′(t)| > R for all t ∈ [a, b],

then ∫ b

a
(b− s)α−2 f (s, x(s), x′(s), x′′(s))ds 6= 0.
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(H3) There exists a constant R∗ > 0 such that for c1 ∈ R, if |c1| > R∗ for t ∈ [a, b], either

c1 f (t, c1(t− a + β), c1, 0) > 0, t ∈ [a, b],

or
c1 f (t, c1(t− a + β), c1, 0) < 0, t ∈ [a, b].

Theorem 3 (cf. [14]). Let f : [a, b]×R3 → R be a continuous function, and suppose conditions
(H1), (H2) and (H3) are verified. Then the class of fractional boundary value problems (1) admits,
at least, one solution in C2([a, b]).

Proof. Under the hypothesis (H1)–(H3), it is proved that the sets

Λ1 = {x ∈ domL\KerL : Lx = λNx, λ ∈ (0, 1)}
Λ2 = {x ∈ KerL : Nx ∈ ImL}
Λ3 = {x ∈ KerL : ±λx + (1− λ)QNx = 0, λ ∈ [0, 1]}

are bounded (cf. [14], Lemmas 7–10). Therefore, consider Λ to be a bounded open subset of
C2([a, b]) such that

⋃3
i=1 Λi ⊂ Λ. We claim that N is L-compact on Λ (cf. [14], Lemma 5)

and L is a Fredholm operator with index 0 (cf. [14], Lemma 4). From the boundedness of
sets Λ1–Λ3, it follows that:

(a) Lx 6= λNx for every x ∈ ∂Λ ∩ (domL\KerL) and λ ∈ (0, 1);
(b) Nx /∈ ImL for every x ∈ KerL ∩ ∂Λ;
(c) Let H(x, λ) = ±λx + (1− λ)QNx. We know that H(x, λ) 6= 0 for x ∈ KerL ∩ ∂Λ.

Thus, by homotopy property of degree, we get

deg(QN|KerL, Λ ∩KerL, 0) = deg(H(·, 0), KerL ∩ ∂Λ, 0)

= deg(H(·, 1), KerL ∩ ∂Λ, 0)

= deg(±I, KerL ∩ ∂Λ, 0) 6= 0,

(I represents the identity operator).

From (a)–(c), according to Theorem 2, there exists, at least, one solution for the equation
Lx = Nx in domL ∩ Λ, which ensure the existence of solutions for the problem (1) in
C2([a, b]), concluding the proof.

The next theorem establishes sufficient conditions for the uniqueness of solutions.

Theorem 4. Suppose that assertions (H1)–(H3) are verified and admit that there exist nonnegative
constants d1, d2 and d3 such that

| f (t, x, y, z)− f (t, x, y, z)| ≤ d1|x− x|+ d2|y− y|+ d3|z− z|, (8)

for every t ∈ [a, b], (x, y, z) ∈ R3, (x, y, z) ∈ R3. If

η · d∗ < 1 (9)

with η as defined in (7) and d∗ = max{d1, d2, d3}, then there exists a unique solution in C2([a.b])
for the the class of boundary value problem (1) under study.

Proof. In order to prove the uniqueness of solution in C2([a, b]), according to (6), consider
the operator T : C2([a, b])→ C2([a, b]) defined by

(Tx)(t) = βϑ + ϑ(t− a) + Iα
a (Nx)(t)

= βϑ + ϑ(t− a) +
1

Γ(α)

∫ t

a
(t− s)α−1( f (s, x(s), x′(s), x′′(s))

)
ds. (10)
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Let BR = {x ∈ C2(R) : ‖x‖C2 ≤ R} and choose

R ≥ (|ϑ|+ b− a + 1)|ϑ|+ ηq
1− ηp∗

,

with p∗ = max{p1, p2, p3}. Note that, according to (H1), 1− ηp∗ > 1. For 2 < α < 3, the
operator T is continuous and twice differentiable. Moreover, taking into account condition
(H1), it follows that

|Tx(t)| ≤ |ϑ|(|β|+ t− a) +
1

Γ(α)

∫ t

a
(t− s)α−1| f (s, x(s), x′(s), x′′(s))|ds

≤ |ϑ|(|β|+ b− a) +
1

Γ(α)

∫ t

a
(t− s)α−1(p∗(|x(s)|+ |x′(s)|+ |x′′(s)|) + q

)
ds

≤ |ϑ|(|β|+ b− a) +
(b− a)α

Γ(α + 1)
q +

(b− a)α

Γ(α + 1)
p∗‖x‖C2 .

Additionally, (Tx)′(t) = ϑ + 1
Γ(α−1)

∫ t
a (t− s)α−2 f (s, x(s), x′(s), x′′(s))ds. Thus,

|(Tx)′(t)| ≤ |ϑ|+ 1
Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s), x′(s), x′′(s))|ds

≤ |ϑ|+ (b− a)α−1

Γ(α)
q +

(b− a)α−1

Γ(α)
p∗‖x‖C2 .

Finally, (Tx)′′(t) = 1
Γ(α−2)

∫ t
a (t− s)α−3 f (s, x(s), x′(s), x′′(s))ds, and

|(Tx)′′(t)| ≤ 1
Γ(α− 2)

∫ t

a
(t− s)α−3| f (s, x(s), x′(s), x′′(s))|ds

≤ (b− a)α−2

Γ(α− 1)
q +

(b− a)α−2

Γ(α− 1)
p∗‖x‖C2 .

Thus, we obtain that ‖Tx‖C2 ≤ (|β|+ b− a + 1)|ϑ|+ ηq + ηp∗R ≤ R, which shows that
T(BR) ⊂ BR.

Now, take x, y ∈ C2([a, b]). For any t ∈ [a, b], we have that

‖Tx− Ty‖C2 = max
t∈[a,b]

{‖Tx− Ty‖∞ + ‖Tx′ − Ty′‖∞ + ‖Tx′′ − Ty′′‖∞}.

where (Ty)(t) = βϑ + ϑ(t − a) + 1
Γ(α)

∫ t
a (t − s)α−1( f (s, y(s), y′(s), y′′(s)))ds, for any y ∈

C2([a, b]).
Applying now (8), we obtain that

‖Tx − Ty‖ ≤ 1
Γ(α)

∫ t

a
(t− s)α−1| f (s, x(s), x′(s), x′′(s))− f (s, y(s), y′(s), y′′(s))|ds

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s), x′(s), x′′(s))− f (s, y(s), y′(s), y′′(s))|ds

+
1

Γ(α− 2)

∫ t

a
(t− s)α−3| f (s, x(s), x′(s), x′′(s))− f (s, y(s), y′(s), y′′(s))|ds

≤ 1
Γ(α)

∫ t

a
(t− s)α−1d∗

(
|x(s)− y(s)|+ |x′(s)− y′(s)|+ |x′′(s)− y′′(s)|

)
ds

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2d∗

(
|x(s)− y(s)|+ |x′(s)− y′(s)|+ |x′′(s)− y′′(s)|

)
ds

+
1

Γ(α− 2)

∫ t

a
(t− s)α−3d∗

(
|x(s)− y(s)|+ |x′(s)− y′(s)|+ |x′′(s)− y′′(s)|

)
ds
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≤ d∗‖x− y‖C2

(∫ t
a (t− s)α−1ds

Γ(α)
+

∫ t
a (t− s)α−2ds

Γ(α− 1)
+

∫ t
a (t− s)α−3

Γ(α− 2)

)
= ηd∗‖x− y‖C2 .

Since η · d∗ < 1, by Banach contraction principle, T has a unique fixed point which is the
unique solution of the problem (1), and the proof is complete.

4. Conclusions

In this work, we consider a class of nonlinear resonant boundary value problem with
(left) fractional Caputo derivative of order α ∈ (2, 3). Applying Mawhin’s coincidence
Theorem, we obtained conditions that guarantee the existence of solutions of the prob-
lem (1). Imposing a Lipschitz condition on the function f and an inequality, with Banach
contraction principle, we proved the uniqueness of solution.
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