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Abstract: Machine-learning applications nowadays usually become a subject of data unavailability, 

complexity, and drift resulting from massive and rapid changes in data Volume, Velocity, and Va-

riety (3V). Recent advances in deep learning have brought many improvements to the field provid-

ing, generative modeling, nonlinear abstractions, and adaptive learning to address these challenges 

respectively. In fact, deep learning aims to learn from representations that provide a consistent ab-

straction of the original feature space, which makes it more meaningful and less complex. However, 

data complexity related to different distortions such as higher levels of noise, for instance, remains 

difficult to overcome and challenging. In this context, recurrent expansion (RE) algorithms are re-

cently unleashed to explore deeper representations than ordinary deep networks, providing further 

improvement in feature mapping. Unlike traditional deep learning, which extracts meaningful rep-

resentations through inputs abstraction, RE allows entire deep networks to be merged into another 

one consecutively allowing exploration of Inputs, Maps, and estimated Targets (IMTs) as primary 

sources of learning; a total of three sources of information to provide additional knowledge about 

their interaction in a deep network. Besides, RE makes it possible to study IMTs of several networks 

and learn significant features, improving its accuracy with each round. In this context, this paper 

presents a general overview of RE, its main learning rules, advantages, disadvantages, and its future 

opportunities, while reviewing an important state-of-the-art and some illustrative examples. 
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1. Introduction 

Machine learning models generally aim to build prediction models using a set of 

training samples to be able to generalize them on the coming unseen samples related to 

the same phenomena [1]. Basically, a well-trained machine learning model should have 

resilience and adaptability against rapidly varying 3V of big-data [2]. As a result, the cur-

rent growth in 3V of big-data has led to the emergence of deep learning philosophy in a 

variety of applications [3]. To better understand the difference between machine learning 

and deep learning models, we bring this simple mathematical description. If we consider 

a machine learning model as a function 𝑓 that approximates a set of training samples 𝑥 

by estimating their targets �̃�, then Formula (1) will look very much like a definition of 

machine learning. Thus, traditional machine learning in this case does not consider the 

effect of feature representations on the training process, while only focusing on hyperpa-

rameters optimization as the main problem of approximation and generalization. Indeed, 

deep learning comes by emphasizing the consideration of improving feature representa-

tions by introducing a well-defined intermediate feature mapping taking into account the 

3V issues of big-data. Mathematically, if we assume that a well-structured feature map is 
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defined as 𝜑(𝑥), the mathematical representations of the deep network can be demon-

strated as in Formula (2). 

�̃� = 𝑓(𝑥) (1) 

�̃� = 𝑓(𝜑(𝑥)) (2) 

𝜑(𝑥) in this case can be any type of deep learning network feature maps, including 

but not limited to autoencoder (AE) hidden layers of all types [4], recurrent neural net-

work (RNN) hidden layers and its variants [5], convolutional neural network (CNN) fea-

ture maps [6], deep belief network (DBN) hidden layers [7]. 

In fact, deep learning has undergone a massive evolution targeting the current rapid 

change of 3V of big-data by introducing a well-sophisticated complex nonlinear feature 

mapping process, adaptive learning features and generative modeling targeting all prob-

lems of complexity, dynamism and availability of data. 

Despite these massive improvements in deep learning, the continuous massive 

growth and rapid change of 3V of big-data has always made it difficult to demand new, 

up-to-date features to make learning systems more adaptive and resilient. The main re-

search gaps in this case are related to the complexity and the dynamism resulting from 

this massive growth of 3V of big-data. 

Accordingly, as an insight to solve these challenges, a recent algorithm called recur-

rent expansion with multiple repeats (REMR) is introduced in the literature. The REMR 

algorithm aims to introduce deeper space then deep learning investigating and experi-

menting new, more meaningful feature representations leading to better performance. 

As a main contribution of this paper with respect to the previous research gap anal-

ysis and since there is now a literature review introducing this new tool, this paper is 

introduced to provide a clear state-of-the-art of this new method, its learning rules, while 

going through various illustrative examples, and finally to illustrate future opportunities. 

This paper is organized as follows. Section 2 is devoted to presenting REMR algo-

rithm and its main learning rules through some explanations, illustrations of flowcharts 

and some important pseudo-codes while comparing the representations of the general 

REMR formula to the previous ones (1–2). Second, some examples will be brought in Sec-

tion 3 based on previous work and clarified to highlight the advantages and limitations of 

REMR algorithms. Section 4 will conclude this paper by discussing some future opportu-

nities. 

2. REMR Background 

REMR is a representation learning algorithm built on a philosophy that aims to ex-

plore and profit from pre-trained deep learning models and their behaviors towards un-

seen sample predictions when building new models. REMR is previously used to solve 

learning problems related to imbalanced classification of complex and dynamic data, with 

missing values [8], as well as for time series predictions in the near future [9,10]. REMR 

has proven its ability to improve both deep learning and small-scale machine learning 

algorithms. 

Accordingly, REMR algorithms are designed to fully merge deep learning networks 

into others consecutively in different rounds to build more complex architecture and ex-

periencing new, more meaningful feature representations. Accordingly, and unlike deep 

learning algorithms, which use inputs 𝑥  as the main source of information, REMR ex-

ploits three main sources, namely inputs 𝑥, maps 𝜑(𝑥) and estimated targets �̃� previ-

ously called IMTs as main training features. Moreover, REMR actually uses IMTs of sev-

eral trained deep networks, studies their behaviors and builds a new robust and more 

accurate model. Mathematically, following the previous illustrations in Formulas (1) and 

(2), REMR can be expressed similarly as in Formula (3). 𝑚 is the maximum number of 

training rounds. 
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Since IMTs, which are referred to as 𝑥𝑘+1 are generally expected to be massive, es-

pecially under multiple layers of deep learning nonlinear mappings, a well-defined data 

processing 𝜌 as in Formula (4) is required before feeding the next deep network. 

�̃�𝑘+1 = 𝑓(𝑥𝑘+1)|𝑘 = 1 → 𝑚 (3) 

𝑥𝑘+1 = 𝜌([𝑥, 𝜑𝑘(𝑥𝑘), �̃�𝑘])|𝑘 = 1 → 𝑚 (4) 

Considering the previous representation of Formula (3) and compared to Formulas 

(1) and (2), the REMR appears more complex than any other deep network witnessed so 

far referring to deeper nonlinear abstractions. 

The flowchart introduced in Figure 1 is dedicated to displaying a clear illustration of 

REMR learning rules. This flowchart shows the positions of IMTs and demonstrates the 

process of collecting, processing, and feeding back IMTs to upcoming deep learning net-

works. 

Processed IMTs

kx ky( )k kx

 Collected IMTs 

 A deep network # k

1 [ , , ( )

| [1,.. ,

]

. ]

)k k k k kx x y x

k m

+

=

= ( 

 

Figure 1. IMTs flows in REMR algorithms. 

REMR does not really show an approximation process by hyperparameter optimiza-

tion which is usually done via gradient descent algorithms whereas it’s more like sub-

merging of deep networks that does so [11]. Therefore, the traditional formulas of the loss 

function will not be useful in evaluating its convergence behavior at every round. In this 

context, REMR uses a special metric developed on the basis of the behavior of the expected 

loss function at each round. The REMR philosophy expects that with each round and as-

suming the performance of the learning process improves, the loss function should exhibit 

better, smoother and faster loss behavior of each deep network at each next round. These 

improved loss function characteristics could result in less area under the loss curve 

(AULC). Therefore, the AULC parameter addressed in Formula (5) is elected as the main 

metric for evaluating the convergence of the learning process in REMR. 𝑖𝑡𝑒 and 𝑙k rep-

resent respectively the maximum number of iterations in each round and the loss function. 

𝐴𝑈𝐿𝐶𝑘  =  ∫ 𝑙𝑘(𝑥𝑘) 
𝑖𝑡𝑒(𝑘)

0

𝑑𝑥𝑘 (5) 

To better understand the REMR algorithm and its main steps, its pseudo-codes are 

introduced in Algorithm 1. 

Algorithm 1. REMR algorithm.  

Inputs: 𝑥𝑘 , 𝑦𝑘 , 𝑚, 𝑖𝑡𝑒𝑘 

Outputs: �̃�𝑚 

% Start training process 

For 𝑘 = 1 → 𝑚 

% Train the deep network and collect IMTs 
𝑥𝑘+1 = 𝜌𝑘([𝑥𝑘 , 𝜑𝑘(𝑥𝑘), �̃�𝑘]); 
% Evaluate the AULC  

AULC𝑘  =  ∫ 𝑙𝑘(𝑥𝑘) 
𝑖𝑡𝑒(𝑘)

0
𝑑𝑥𝑘; 
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% Reinitialize parameters 

𝑥𝑘 = 𝑥𝑘+1; 

End(For) 

3. Some Illustrative Examples 

This section presents two main examples obtained from previous applications of 

REMR. The first comes from a classification problem [8] the second is related to regression 

problem [12]. These sections are not really dedicated to display numerical evaluations be-

cause some of these results are already revealed in previous works [8–10]. Accordingly, 

the main objective of this section is to illustrate the advantages of REMR from the point of 

view of data representations by showing some important data visualizations. 

3.1. Classification Problem 

The classification problem addressed in this case is closely related to imbalanced 

complex and dynamic data suffering from higher cardinality level under missing values. 

These data were subject of REMR training using LSTM network as the main element of 

recurrent expansion. Information on LSTM hyperparameters can be found at [8]. Figure 2 

is devoted to show some important results at this stage. The REMR was unwound for 20 

rounds. First, the results in Figure 2a show clear convergences in AULC behavior as ex-

pected during the training process. This confirms the first REMR learning hypothesis ex-

plained earlier in Section 2. Second, Figure 2b,c are related to processed IMTs of first and 

last rounds respectively. The purpose of this second illustration is to show the effect of 

REMR mappings on representations. REMR in this case not only shows feature separation 

ability, but also shows agglomeration and outlier correction ability. 

 

Figure 2. REMR performances for a complex classification problem: (a) Behavior of AULC function; 

(b) Data scatters at round 1; (c) Data scatters at round 20 (i.e., final round). 

3.2. Regression Problems 

The regression problem adopted in this work is related to an approximation of a lin-

ear deterioration functions based on a set of nonlinear and complex features detailed in 

[12]. Similarly, LSTM was also involved in this experiment while the hyperparameters are 

tuned similarly to LSTM network introduced in [12] for 30 rounds. Figure 3 presents re-

sults obtained on REMR performance. The AULC function of Figure 3a is still able to carry 

out a great convergence of REMR algorithm. This also confirms the ability of REMR to fit 

both regression and classification even if the loss function is of different type. Figure 3b,c 

are devoted to show an example of deterioration trajectory curve fitting using REMR at 

the first and last rounds respectively. A 99% confidence interval is used to provide insight 

into predictions uncertainties. The results show that REMR algorithm attempts at each 

round to approach desired responses. This reflects the benefits of learning from different 

IMTs produced from different deep networks to teach the model to behave appropriately. 

We believe that the reason for this large approximation is closely related to new sources 
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of information (i.e., mainly estimated targets) providing additional knowledge to the sys-

tem. Also, learning consecutively from different IMTs will be helpful in understanding the 

effect of changing inputs, maps, and targets respectively on the approximation process 

leading to producing better results each time based on better understanding of these be-

haviors. 

 

Figure 3. REMR performances for a complex regression problem: (a) Behavior of AULC function; 

(b) REMR predictions at round 1; (c) REMR predictions at round 30 (i.e., final round). 

3.3. Advantages of REMR 

To summarize; From previous studies done so far using the REMR algorithm [8–10], 

REMR shows its ability to improve the learning performance of deep networks through 

the following aspects: 

• Improve feature representations through understanding the different IMTs of differ-

ent deep networks; 

• Providing a new source of information, such as estimated targets for example, helps 

introduce additional knowledge into the system through a kind of transductive trans-

fer learning; 

• The REMR pseudocode in Algorithm 1 shows that building an REMR algorithm does 

not require much intervention and is simple to design with only a few hyperparam-

eters (i.e., 𝑘, 𝑚, and 𝑖𝑡𝑒); 

• REMR not only shows the ability to improve feature representations, but also the 

correction of outliers. 

3.4. Disadvantages of REMR 

Since it is undeniable that REMR was able to achieve excellent prediction results from 

both classification and regression, it also experiences some burdens during model recon-

structions, including the following: 

• When building an REMR model by merging complex deep networks, it means that 

the computational complexity will be increased and will require more computational 

power than ordinary deep learning. This means that this architecture is computation-

ally expensive; 

• Convergence of the AULC function strongly depends on IMTs initialization IMTs. 

This means that stacking in the inappropriate IMTs will cause the AULC function to 

diverge, which could lead to a worse outcome at each round; 

• So far, IMTs initialization is evaluated by the basis of errors and trials, which means 

that it takes a lot of intervention when rebuilding the model at this stage. 

3.5. Future Opportunities of REMR 

As results of the aforementioned advantages of REMR algorithms, future research 

opportunities of REMR algorithms revolve around the following: 

• Target IMTs initialization problems by performing experiments on IMT selection and 

optimization in a few primary rounds. This will be useful in deciding whether we go 
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with this model or not without consuming a lot of computing resources throughout 

the training rounds; 

• Explore available REMR architecture inspired by ensemble learning and parallel ar-

chitectures to help deliver even better initial IMTs. 

4. Conclusions 

This paper reviews REMR algorithms through important cutting-edge work. It shows 

the main learning rules with respect to some illustrative flowcharts and pseudo-codes. 

Moreover, it illustrates the performance of REMR by going through some important illus-

trations for both classification and regression. It also has significant pros, cons, and signif-

icant future opportunities to work on at this point. The most important conclusion, in this 

case is, that REMR behaves appropriately as expected if and only if the IMTs are better 

initialized initially. This means that future opportunities will revolve around it to better 

improve its performance and application. 
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