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Abstract: In this work, we study the existence and the uniqueness of the solution of a wave equation
with dynamic Wentztell type boundary conditions on a part of the boundary I'y of the domain ()
with nonlinear delays in nonlinear dampings in () and on I'y, using Faedo-Galerkin’s method.

Keywords: wave equation; wentzell boundary conditions; nonlinear dampings; nonlinear delays;
Faedo-Galerkin’s method

1. Introduction

We consider the following coupled system wave/Wentzell :

in Q) x (0,00),
on Ty x (0,00),

u — A+ pi g1 (ur) + pagr (ue(t — 7)) =0,
Op + Oyt — A0 + 182 (0r) + phga (v (t — 7)) =0,

u=ru, onT x (0,00),

u=0, on Ty x (0,00), 1
(1(0),0(0)) = (uo, v0), inQxT, M
(u(0),0:(0)) = (ug,v1), inQxT,

in Q) x (0,7),
onTy x (0,7),

ur(x,t — 1) = fo,(x,t — 1),
) :foz(xlth)r

where () is a bounded domain in R”, (n > 2), with smooth boundary I' = 9Q), divided
into two closed and disjoint subsets Iy and Ty, such that To NT; = @ and Tp UT; = T. We
denote by V1 the tangential gradient on I, by At the tangential Laplacian on I" and by 9,
the normal derivative where v represents the unit outward normal to I".

1, p2, py and ph are positive real numbers, the two functions gq(u(t — 7)) and
2(ve(t — 7)) describe the delays on the nonlinear frictional dissipations g1 (u¢) and ga(v¢),
on () and I'y, respectively, T > 0 is a time delay and ug, vg, u1, v1, fo, and fo, are the initial
data in some suitable (Sobolev) function spaces.

Throughout history, the wave equation has known a great deal of work.

In our work, we are particularly interested in the wave equation with boundary
conditions of the Wentzell type, which are characterized by the presence of differential
operators (Aru) of the same order as the main operator.

These problems are involved in the modeling of many phenomena: mechanical like
elasticity, physics such as diffusion processes or wave propagation.

Wentzell’s conditions are obtained by asymptotic methods from transmission prob-
lems, (see Lemrabet. K [1]).

The following condition :

ou—Aru=g, onl
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for this equation
—Au+u=f, inQ

was first introduced by Wentzell (Ventcel) in 1959, (see [2]), for diffusion processes. It
models the heat exchange of the body () with the surrounding environment in the presence
of a thin film, very good conductor, on the surface of the body.

Delay is the property of a physical system by which the response to an applied force is
retarded in its effect. Whenever material, information, or energy is physically transmitted
from one place to another, there is a delay present, a delay in the law of feedback modeling
mechanical shift over time.

Delays so often occur in many: physical problems, chemical, biological and economic
phenomena.

The system (1) describes vibrations of a flexible body with a thin boundary layer of
high rigidity on its boundary I';.

Our goal is to show that this problem is well posed, that there is existence and
uniqueness of a solution.

1.1. Assumptions on the Damping and Delay Functions g; fori =1,2:

We pose the following assumptions on the damping and delay functions:

(A1) g; : R — R is an odd non decreasing function of the class C!(R) such that there
exist r (sufficiently small), ¢;, C;, ¢, a1 and a; > 0 for i = 1,2, and a convex, increasing
function H : Ry — R of the class C' (R )NC%(]0, oo[) satisfying :

H(0) = 0 and H linear on [0, 7] or (H'(0) = 0 and H” > 0 on ]0,r]), such that

cils| < Igi(s)] < Cils| if |s| =7, @)
s> +gi(s) < H '(sgi(s)) if[s| <7, ®)
8i(s)| < ¢ @)

a158i(s) < Gi(s) < aasgi(s), ()

where

(A2) appy < aqpq and apph < aqp.

1.2. Transformation of Problem (1)
Now, as in the work of [3], we introduce the new variables:

z1(x,0,t) =us(x,t —p1), x€Q, pe(0,1), t>0,
zo(x,0,t) =ve(x,t —pt), x€Tq1, p€(0,1), t>0,

where T > 0 is a time delay.
Then, we have

{ T(z1)e(x,0,t) + (z1)p(x,0,t) =0, on Q x (0,1) x (0,00),
T(22)t(x,0,t) + (22)p(x,0,t) =0, on Iy x (0,1) x (0,00),

where (z;); = % and (z;)p, = %—?, fori=1,2.

Therefore, problem (1) is equivalent to
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up — A+ pu1g1(ug) + pag1(z1(x,1,£)) =0, in Q x (0,00),
Vg + Oyu — Ao+ i g (vr) + Hhga(za(x,1,1)) =0, on Ty x (0,00),
T(z1)t(x, 0,t) + (z1)p(x,0,t) =0, in Qx(0,1) x (0,00),
T(22)t(x,0,t) + (22)p(x,0,t) =0, on T x(0,1) x (0,00),
u=mo, on I' x (0,00),
u=0, on Ty x (0, 00), ©)
21(x,0,8) = u(x, 1), in Q x (0,00),
22(x,0,t) = v(x, 1), on I'1 x (0,00),
(u(0),v(0)) = (ug,v0), in QxT,
(ur(0),9:(0)) = (ug,v1), in QxT,
z1(x,0,0) = fo,(x, —pT), in Qx(0,1),
z2(x,0,0) = fo,(x, —p7), on I x (0,1).
1.3. Energy of System (6)
Let ¢ and  be strictly positive constants, such that
el =m) o= takn @)
&1 &2
ol =m) <§<77y,1_“2y£. (8)
a1 X2

We define the energy associated to the solution of problem (6) by

1 2 1 2 1 2 1 2
E(t) = S llull” + 5 Vul|” + Slloellr, + 5 Vol

+§/ (/ Gi(z1(x, p, ))dp)dx—l—C/ </ Gz(zz(x,p,t))dp>da, 9)

1
where |.|| = (., )% and ||.[|r, = (,.)f,, (the norms associated with the inner products in
L%(Q) and L?(T;), respectively).

1.4. Energy Decay
We have the following lemma on the dissipation of energy E(f):

Lemma 1. Let (u,v,21,22) be a solution of problem (6). Then, the energy functional defined by (9)
satisfies

E'(t) < —al/nutgl(ut)dx—az/r 01§ (vt)do
1
—a3/Qzl(x,l,t))gl(zl(x,l,t))dx

—a4/r z2(x,1,1))82(2z2(x,1,t))do
1

< 0, vt >0, (10)
where a; = (m — %az - ]/lleZ), ay = (;4’1 — %0&2 — y’zaz), az = (le% —ua(1— vc1)> and

ag = (“1% —pp(1— M))-

For the proof of Lemma 1, we can see [4].
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2. Main Result

We introduce the following set
H(Q) = {u e H'(Q) / |, =0},

which is endowed with the Hilbert structure induced by H' (Q).
Then, we consider the canonical norms of H%O (Q) and H!(T)

2 2 2 2
el (o) = IVHll Mol = VT2l
Now, we state the following existence and uniqueness result:

Theorem 1. Let (ug, u1,09,v1) € [H*(Q) N Hy (Q)) x Hy (Q)] x [H*(T1) x H'(T1)], fo, €
Hy (Q;H'(0,1)) and fo, € H' (T1; H'(0,1)) satisfying the following compatibility condition:

fo, (L, 0) = uy, in Q, (11)

{ dyug — Atvg + H182(v1) =0, on Ty,
fo,(.,0) =y, on T7j.

Assume that (A1) and (A2) hold, then problem (6) possesses a unique global weak solution verifying
forT>0:

2

(1) € L(0,T; [HE (Q)] < L(€),
2

(v,01,01) € L®(0, T; [Hl (rl)} x L2(I4)).

We shall give a proof of Theorem 1, by using the Faedo-Galerkin’s approximation.

Proof of Theorem 1. Throughtout this proof, assume (up,v9) € (H?(Q) N H}O(Q)) X
(H*(T1) N HY(T1)), (u1,01) € Hp (Q) x H(Tv), fo, € Hp (;H'(0,1)) and fp, € H'
(Ty; HY(0,1)).

For any n € N, we denote by U, and V;, the two finite dimentional spaces defined
by respectively U, = span{w;, wy, ..., w, } and V;, = span{wy, W, ..., Wy, }, where {w;}; -,
and {W; }, ;- are basis in the spaces H?(Q)N H%O(Q) and H?(Ty) N HY(T), respecti;zeiy.

Now, define for 1 < i < n the sequences ¢;(x, p) and ¢;(x, p) as follows:

{ ¢i(x,0) = w;,

then, extend ¢;(x, 0) by ¢;(x, p) over L%(Q x (0,1)) and ¢;(x,0) by ¢;(x, p) over L?(Ty x (0,1))
and denote Z,, Z, the linear spaces generated by {¢1, ¢, ..., ¢, } and {4)1, ¢, ... (,bn} respec-
tively.

Let us define the approximations u", v", z| and z by

w'(t) =) ai(tywi, v

d; (1) i,

M:
) [\1:
§
_N
||
1=
o
xR
—
N
=
ok
—
N
I
M:

1

where a, b, ¢ and d” are from the class C? and determined by following differential
equations:

(uhy wi) + (Vu", Vo) + i (81(u), wi) + pa (g1 (2 (x, 1, 1)), wi)
+ (v, Wi, + (Vro", Vrwy)r, + pi(g2(0F), @i)r, (12)
+15(82(25 (x, 1, 1)), @i)r, =0, 1<i<mn,
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1
/Q/ (tz7, + zﬁlp)(pidpdx =0, 1<i<n (13)
0

and

1 -
/r /o (Tth +z§p)<pidpda =0, 1<i<mn, (14)
1

with initial data:

w(0) = ul = 11 a'(0)w; — wup in (Hz(Q)ﬁH%O(Q)),

uf(0) = uf = (z)f() — up in Hll-o(Q),

o"(0) = o = 0w = vy in (H2(Tp) NHY(IY)), (15)
0p(0) = o} = (b (0)w; — v in HY(Ty),

Z(p,0) = 2§ = m<o> — fo, in  HL(QH(0,1)),
Z(p0) = z5, = YLd}(0)¢ — fo, n H'(T;H'Y(0,1).

The local existence of solutions of the problem (12)-(15) is standard by the theory of ordinary
differential equations, we can conclude that there is a t,, > 0 such that in [0, ], the problem
(12)—(15) has a unique local solution which can be extended to a maximal interval [0, T]
(with 0 < T < 00) by Zorn’s lemma, since the nonlinear terms in (12) are locally Lipschitz
continuous.

We can utilize a standard compactness argument for the limiting procedure and it
suffices to derive some a priori estimates for (u",v", 2, 2} ).

The first estimate

Since the sequences (ug)u, (47 )n, (v§)n, (0])n, (25, )n and (zf,)n converge, the stan-
dard calculations, using (12)—(15) similar to those used to find (10), yield a number M;
independant of # such that

t t
En(t)+a1/ / u?gl(u?)dxds—i-%/ / z1(x,1,5)g1(21 (x,1,5))dxds
0 JO 0 JO
t t
+a2/ / U’fgz(v?)d(fds—i—M/ / z5(x,1,5)g2(25(x,1,s))dods
0 JIy 0 JI
< Eu(0) <My, (16)
where

1
Eat) = 5 (112 + 1V + o} I3, + 97073

+C/ (/ Gi(z] (%, p, )dp)dx+§/ (/ Gg(z’ﬁ(x,p,t)dp>d(7

and a;,i = 1, ...,4 are defined in Lemmma 1.
The estimate (16) imply that the solution (1", v", 2}, 2% ), exists globally in [0, +o0).
Estimate (16) yields for any T > 0

u" is bounded in L® (0 T; HFO ) (17)
v" isbounded in L% (O,T HY(T, ) (18)
u" is bounded in L® (o T; L2(Q ) (19)
v} isbounded in L <O ) (20)
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utg(u}') is bounded in L}(Q x (0,T)), (21)

v} gy (v) is bounded in L(Ty x (0,T)), (22)
Gi(z!')) isbounded in L (0, T; L1(Q) x (0,1))), (23)
Ga(z8)) isbounded in L* (0, T; LTy x (0,1))), (24)
z(x,1,t)g1(z}(x,1,t)) is bounded in L (Q x (0, T)), (25)
Z5(x,1,1)g2(25 (x,1,t)) is bounded in L} (T x (0, T)). (26)

The second estimate
We need to estimate u/,(0) and o},(0) in norms L?(Q)) and L?(T';) respectively.
By taking t = 0 and considering w; = u};,(0) and w; = v};(0) in (12), we get

[uf (0) 1> + (Vuf, Vi (0)) + pa (g1 (uf ), ufs (0)) + pa (g1 (28,), ks (0))

+[[0}(0) 7, + (V105, V1ops(0))r, + 11 (32(01), 05 (0))r, + ph(32(28, ), 0k (0))r,
= 0 27)

We have the equalities

(Vug, Vuiy(0)) = —(Aug, uiz(0)) + (dvug, 05 (0))ry, (28)
(Vrog, V1o (0))r, = —(Arvg,04(0))r; - (29)

Employing Young’s inequality on (28) and (29) and using the fact that if ufj € (H%O (Q)
NH2(Q)), then d,ull € H/2(T;) — L?(T'y), hence d,ul} € L?(T'y), thus

(Vug, Vu(0)) = —(Dug, uz(0)) + (dvug, 05 (0))ry (30)

1 2, 1 2 2 2
< glldugl”™ + gllovuglr, + ellus (0)11° + ell vk (Ol

n n 1 n n
(87, 0% (0)r, < || A79§IE, +ellof (O)IIF,, (31)
i 2 2
ia(g1.(uf), 1 (0)) < Zhga () |* + el ufh (0, (32)
l n n (.u/l)z ny |12 n 2
p1(82(v1), 05 (0))r, < e ll&2(@1) 1T, + ellvg (0) I, , (33)

2 " >
|+ ellug ()2, (34)

2
Ha(g1 (28, 1 (0)) < 22|81 (26,

—~

1\2
(2028, o O, < Y2 (e

2
2
r, + £[|vi (0)IF, (35)
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by reinjecting (30)-(35) in (27), with a suitable choice of ¢ and since (g1(u7))n, (81(z5,))n
and (2(v7))n, (82(z(,))n are bounded in L%(Q) and L?(T) respectively by (A1), (A2) and
initial data (15), we get

[t O) | + |01 (0) I, < Mo, (36)

where M; is a positive constant independent of n and depends on the initial datas.
Next, differentiating (12) with respect to t, multiplying the resulting equation by
(a)(t) in Oy and by (b!')#(t) on T'1 and summing over i from 1 to 1, we get

1d
2dt

e [ kP g e x4+ iz [ (a0, 1, 8) (@00 (21 (1, 1)

it [ 0B P(2)e(of o+ 5 [ ()il 1 0) (8201 (B (1, )dor
1 1
= 0. (37)

2 2 2
Ly + 19 1P + o 1, + 1V 72t 12, }

Differentiating (13) with respect to ¢, multiplying the resulting equation by (c/');(t) and
summing over i from 1 to , it follows that

2 2

Td
el fot(p, ) =0. (38)

L2(Qx(0,1))

14,
12(Qx(0,1)) + 2dp 2, (e )

Analogously, differentiating (14) with respect to ¢, multiplying the resulting equation by
(d")¢(t) and summing over i from 1 to n, it follows that

1d

Td 2
EEHzgr(Plt)HLz(I‘lx(O,l)) T3 2dp 122, (o, ¢ HLZ (ryx(01) = O (39)

Taking the sum of (37)—(39), we obtain
14
2dt
+1 )i, ) 200 0)) + THED (0 D2y x 010 |

1
o [P e (e)dx + 5 [ 1EHix 1,8 Pax
n n 1 n
i [ Jon(2)i(et)de + 5 [ 1)l 1,0 do
rl .rl
1, , "
= SluilP e /Q ufh (2)i(x,1,)(81): (2 (x, 1, 1)) dx

1 n n n n
+§||vtt||%1 - P‘,z/r 0 (23)e(x, 1, £)(82)1 (23 (x, 1, 1) )do. (40)
1

2 2 2 2
{Ilu?tll VUl +lloglr, + IVrofll,

Using (4) and Young's inequality, we obtain

ﬂz/ u(21)e(x, 1, £)(g1)e (27 (x, 1, £) )dx

= /‘ (y4) ufi 1%, (41)
1o /r] v (23)e(x, 1, 1) (g2)e(z3 (x, 1, 1) )do
1 \2
< e /rl|<z3>t<x,1,t>|2da+(’Z? oRI2,. )
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Reinjecting (41) and (42) in (40) and choosing ¢ small enough, we get
1d
2dt
+7 @i Dl 01y + THEDHR DI, (01 |
[ Pgoe(u)x+c [ ()i 1,0)Pax
i [ b P ()@ +e [ [(#)i(x1, 00

< Uil + 1ok, }-

2 2 2 2
{||”?t|| + IV I* + ok, + IVrofliF,

Integrating the last inequality over (0,t), we obtain
1{” nI2 4wy 2 o |12
5 Ul ll” + IVud ™ + oIy, + [Vrofi,
+ @il D2 01y + T EDelo, DT rlx(om}
yl/ / [l (g1)e dxds—l—c// 2| (x, 1, ) Pdxds
i [ [ bR atotdods e [ [ ()01, Pdods
0 F1 0 1—‘1

1 2 2 2 2
E{Hu'ﬁ(o)ll + |95 0) [T, + VUi [I” + IV rof 1T,

+7 ()¢5, 0,0 T2 0.) + T ()1 (% 0,0) 2 01y

/ ! n 2d 't n Zd
e, [ute(s)lads + A 95 (s) |7, ds ¢-

Using (15) and (36), then we use Gronwall’s lemma to get

IN

a2+ 195 1 + e, + 19 79F 1, + Tl EDelo DIz on)
t
+r||<z3>t<p,t>||%z<rlxo1 e [ [ il (g0)e(up)dxds

—i—c/ / (x,1,s)] dxds+y1/ / [0 1% (g2)¢ (0] )dods

+c/ / |(z2)¢(x,1,5)|*dods
0 /1

< MB/

where Mj is independent of n and for all t € [0, T|. Therefore, we conclude that

u} isbounded in L% (O T; Hro )

v} isbounded in L% (0 T; H (T )
uf, is bounded in L% (O, T; L2(Q)
nos : o .72
v}y isbounded in L (O, T; L7( F1)>,

z{ isbounded in L®(0,T; L*(Q x (0,1)),

(43)

(44)

(45)

(46)

(47)
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23 isbounded in L®(0,T; L*(Ty x (0,1)). (48)

Estimate for (z'),, and (2),
Replacing ¢; by —A¢; in (13), multiplying the resulting equation by ¢ () and summing
over i from 1 to n, it follows that

Td . 1d .
5 71V (P/t)”iZ(Qx(o,l)) + E%Hvzl (P/t)||%2(nx(o,1)) =0. (49)

Similarly, replacing ¢; by —Ar¢; in (14), multiplying the resulting equation by d”(¢) and
summing over i from 1 to 7, it follows that

Td 1d
3tV 13Ol o) + 5751V (0 )2 < 01)) = (50)
Combining (49) and (50), we have
Td 2 Td 2
5 g1 VA @ D20 0,0)) T 5 731V 122 (0 DI, % 0,1))
—i—;{/Q]Vz{‘(x,l,t)Fdx—i— /rl\Vng(x, 1, t)2da}
1 2 2
= S{Ivu P+ 1o 2, }.
Integrating the last inequality over (0, t) and using Gronwall’s lemma, we have

T n T n
EHvzl (p/t)H%Z(QX(O,l)) + §||VT22 (prt)”%Z(le(O,l))
¢ T n T n
< e T{EHVZI(xfpfO)H%Z(Qx(O,l)) + EHVTZZ(x'PIO)H%Z(le(O,l))}’

for all t € [0, T]. Therefore, we conclude that

2" is bounded in L*® (0, T; H, (Q; L2(0, 1))), (51)
2% is bounded in L (o, T; H! (Fl;LZ(O,l))>. (52)
The passing to the limit

Applying Dunford-Petti’s theorem, we conclude that there exists subsequences of
(™), (V")n, (2])n and (2§ ), which we still denote by (1), (v")n, (2])n and (2§ ), respec-
tively, such that from (17), (43) and (45), we get

(u", uf, ufy) — (u, us, uy) weakly star in L® (0, T; [H%O(Q)r X [}(Q)), (53)
from (18), (44) and (46), we obtain

(", v{,v5) — (v, 04, v ) weakly star in L <0, T; [Hl (Fl)} ? X LZ(F1)>, (54)
from (51) and (52), we find

2" — z; weakly star in L (o, T; H (Q,- L2(0, 1)) ) (55)

z5 — zp weakly star in L* (0, T; H' (1"1; L%(0, 1)) ) , (56)
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from (47) and (48), we get

zy, — z1, weakly star in L*(0, T; L*(Q % (0,1))), (57)

zy, — zj, weakly star in L*(0, T; L?(T; x (0,1))), (58)

and from (19)-(26), we have
g1(ul") — x1 weakly star in L2((0, T) x Q),
g2 (0)') — xo weakly star in L2((0, T) x I'y),
91(z}(x,1,t)) — ¥1 weakly star in L*((0, T) x Q),
9(25(x,1,t)) — ¥, weakly star in L2((0, T) x I'y).

Thanks to Aubin-Lions’s theorem, (see [5]), we deduce that there exists subsequences which
we still denote (u");, (v")n, (2} )n and (25 )y, such that

u" — u strongly in L? (0, T; Lz(Q)), (59)
uy — uy strongly in L? (O, T; L2(Q)), (60)
0" — v strongly in L (0, T; Lz(Fl)), (61)
off — vy strongly in 120, T, 12(T) ), (62)
z}l — z; strongly in L2(Q x (0,1) x (0, T)), (63)
z8 — zp strongly in L?(T'; x (0,1) x (0, T)). (64)
Analysis of the nonlinear terms
Denoteby Q =Q x (0,T) and X =T7 x (0, T).
We can deduce from (60) and (62)
u} — uy almost everywhere on Q, (65)
v{ — v; almost everywhere on %, (66)

and
zl — 1z strongly in L2 (0, T; L2(Q)) and a.e on Q,
z} — 2z strongly in L2 (O, T; Lz(Fl)) and a.e on X.
We have the following two lemmas, (for the proof, see [4]):

Lemma 2. Foreach T >0, g1(ut), g1(z1(.,1,.)) € LY(Q) and g(vt), £2(22(.,1,.)) € LY(Z),
we have

g1 (ue)ll 1) 181(z1 (L L )Ly < Ax
and
182(00) 1115y, 182(z2( L, Dl 1 (z) < A2,

where A1 and Ay are constants independent of t.
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Lemma 3. We have the following convergences

{ g1(ul') — g1(up) in LY(Q x (0, T)),
92(v") — go(vr) in LY(T1 x (0, T)).

{ g1(z1) = g1(z1) in LY (1 x (0, T)),
92(z%) — g2(zp) in LY(T'; x (0, T)).

Hence from Lemma 3, we deduce that

{ g1(u}) = x1 = g1(ut) weakly in L2(Q x (0,T)), 67)
22(v1) = x2 = g2(vt) weakly in L2(Tq x (0,T)),

and

{ g1(zl(x,1,1)) = ¥1 = g1(z1(x, 1, 1)) weakly in L2(Q x (0, T)), (68)

8225 (x,1,t)) = ¥2 = g2(22(x, 1, 1)) weakly in Lz(Fl x (0,T)).

Now, returning to (12) and using standard arguments, we can show from the above
estimates that

up — Au A+ p1g1(ur) + p2g1(z1(,1,.)) =0, in D'(Q x (0,T)). (69)
Since uy, g1 (ut) and g1(z1(., 1,.)) € L?(0, T; L?(Q))), we obtain from identity (69)
Au € L2 (0, T; LZ(Q)),
and therefore identity (69) yields
wy — A+ prgr () + pogi(z1(,1,.)) =0, in L2 (0, T; LZ(Q)). (70)

Taking (70) into account and making use of the generalized Green’s formula, we deduce
that

yu — Aro = —uigo(vr) — whgo(z2(,,1,.)) — oy, in D’ (0, T;H 2 (F1)>,
and since vy, §»(vt) and g2(22(., 1,.)) € L?(0, T; L*(T'1)), we infer that
dou — Ao = — 1) g2(0r) — 1hga(22(,1,.)) — vgy, in L2 (o, T; L2(F1)),

then
vy + Oyt — Ao+ Wi g (vr) + phgr(22(.,1,.)) =0, in L2 (0, T; Lz(l"l)).

Exploiting the convergences (55)-(58), (63) and (64), we pass to the limit in (13) and (14) to
obtain

T r1
/0 /0 /Q (121, + 21p)Ordxdpdt =0, 9y € 12(0, T HY, (O x (0,1))),

T r1
/ / / (23, + 239)Ooddadpdt =0, V8, € 12(0, T; HY(Ty x (0,1))).
o Jo Jr,

Uniqueness.
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Let (u,v,21,22) and (i, 7,21, 22 ) be two solutions of problem (6). Then (U, V, Z1,Z,) =

(u,v,21,22) — (i, 0,21, 2) verifies the following system of equations:
Us — AU + p1g1 (ur) — pi g ()
+u281(z1(x, 1, 1)) — uag1(z1(x,1,¢)) =0, in Q x (0,00),
Vit +0,U — ATV + i 82(vr) — 1 82(01)
+Hp82(22(x, 1, 1)) — Hpg2(22(x,1,1)) =0, on Iy x (0,00),
TZ21,(x,0,t) + Z1,(x,p,t) =0, in  Qx(0,1) x (0,00),
T2, (x,0,t) + Zzp(x,p,t) =0, on Tpx(0,1)x (0,00),
u=Vv, on ' x (0,00),
u=o0, on I % (0,00), (71)
Z1(x,0,t) = U(x, t), in Q x (0,00),
Zr(x,0,t) = Vi(x, 1), on I x (0,00),
(U:(0), v+(0)) = (0,0), in QxT,
Z1(x,p,0) =0, in Qx(0,1),
Zz(x o, ) =0, on 1"1 X (0,1)
Multiplying the first equation of (71) by U;, we have
(Ue, Ur) — (AU, Up) + p1 (g1 () — g1(#ie), Ut)
+u2(81(z1(x,1,t)) — g1(z1(x, 1L, 1)), Us)
= 0, (72)
next, integrating over (), we get
—(AU, Uy) = (VU,VU;) — (a4, Vt)rlr
then, (72) becomes
(U, Uy) + (VU, VU;) — (9uU, Vi)r, + pa(g1(ue) — g1(it), Uy)
+u2(81(z1(x, 1, 1)) — g1(z1(x, 1, 1)), Us)
= 0,
which is equivalent to
2dtHUtH + ZdtHVUH — (U, Vi), + pa (g1 (ue) — g1 (ur), Uy)
+u2(g1(z1(x, 1, 1)) — g1(z1(x, 1, 1)), Uy)
= 0. (73)
Multiplying the second equation of (71) by V;, we have
(Vie, Vo), + (00U, Vi), — (ATV, Vi), + 11 (82(v) — §2(0), Vi)r,
+Ha(82(22(x, 1, 1)) — g2(Z2(x, 1, 1)), Vi)r,
- 0, (74)
next, integrating over I';, we get
—(ArV, Vi), = (V1V,V1Vir,,
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then, (74) becomes

(Vie, Vo), + (00U, Vi), + (V7V, VVi)r, + 1 (82(vr) — §2(1), Vi)r,

+15(82(22(x, 1, 1)) — 82(22(x, 1, 1)), Vi),
= O’

which is equivalent to

5 71 Vellr, + zdtHVTVHr1 (0uU, Ve)r, + p1(82(vr) — 82(31), Vi),

+15(82(22(x, 1, 1)) — 82(22(x, 1, 1)), Vi),
= 0 (75)

Now, summing (73) and (75), we obtain

1d 1d
Vi
S SN + 2 TV + 5 5 I, + 2 2

(g1 (ue) — g1(r), Ur) + py(82(vr) — 82(3), Vi)r,
+ua(g1(z1(x, 1,1)) — g1(z1(x, 1, 1)), Uy)
+Ha(82(22(x, 1, 1)) — g2(22(x, 1, 1)), Vi),
= 0. (76)

Vvt

Similarly, multiplying the third and fourth equation of (71) by respectively Z; and Z,,
integrating over () x (0,1) and I'; x (0, 1), we obtain

e R EAACE WOl i [IAC I S 77)

s [ 1Zatop 0B do+ 3 {12101, ~ Vi DR, } =0 78)
From (76)—(78), and using Cauchy-Schwarz’s inequality, we get
1d
2dt
wt [ ziap )P0+ o [ ZaGep,0) R, o}

+pa (g1 (ue) — g1(ie), Ur) + py(82(0r) — 2(T1), Vi),
= —m2(&1(z1(x, 1, t) — g1(z1(x, 1, 1)), Up)
—p5(82(22(x, 1, 1)) — g2(22(x, 1, 1)), Vi),

(x,

1
5 I (x

2 2 2 2
{IIUtII + VU™ +[Villr, + VTV,

1
2 2
DT+ 5 1Vi(x Dl

IN

1 -
S IUe G D)2+ llg1(za(x,1,1)) = g1(Ea (o, 1, 1)) [P | U (x, )
1 -
5 IVeCe, DIIF, + llg2(z2(x, 1) = 2(Z2(x, L) I, Vi (x, D7,

next, using condition (4) and Young’s inequality, we find

1d
24t

4t [ Nzatp ) Pap+ o [ 1Za( .01 do

2 2 2 2
U D2+ Ve DI, + 121 (6 L0IR + | Za(x1,8) 1, .

{1 + 19U + 1 ViliF, + Vo VIE,

IN
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where ¢ > 0, then integrating over (0, ) and using Gronwall’s lemma, we conclude that
2 2 2 2
L™ + (VU™ + [ Vil + VTV,

1 1
4 [NZiep, 0 Pap -+ [ 1Za(x,0, 1), do
= 0,

which implies (U, V, Zy,Z;) = 0.
This finishes the proof of Theorem 1. [

3. Conclusions

In this article, we have proved the existence and uniqueness of the solution of a wave
equation with dynamic Wentztell type boundary conditions on a part of the boundary
I'1 of the domain ) with nonlinear delays in nonlinear dampings in (2 and on I';, using
Faedo-Galerkin’s method.
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