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Abstract: The present work proposes a new class of model for random variables with support in the
positive real line, this model explains the conditional quantile and is an alternative for modeling data
that indicate asymmetric behavior and heavy tails. We present a new autoregressive moving average
model based on the τ–th quantile of the BXII distribution (BXII-ARMA) since the quantile is less
sensitive than the average of heterogeneous populations and also suitable in the presence of outliers.
This model makes it possible to model any quantile by a dynamic structure containing autoregressive
terms and moving averages, time-varying regressors, unknown parameters, and a link function. The
conditional maximum likelihood method is considered to estimate the parameters and build the
confidence intervals of the BXII-ARMA model. In addition, the model is adjusted to real data related
to the financial market and compared with other competing models.
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1. Introduction

The origin of the BXII distribution was through a system of distributions, which was
introduced by [1]. The BXII was defined as the twelfth model of this system and has recently
been applied mainly in income studies [2,3], poverty indicators [4,5], dropout proportion [6],
and survival analysis [7,8], between others. For economists, the BXII is also well known
as the Singh-Maddala distribution because it is widely used as an alternative to model
income data [9]. In the methodological scope, some properties of the model were explored
by [10–12]. Generalizations of the BXII distribution have also been explored in recent years,
for example, the distributions Marshall-Olkin generalized Burr XII [13], Reflected Unit Burr
XII [14], Generalized log-logistic Burr XII [13], and BurrSAR

b distribution [15].
In recent literature, several types of research have been devoted to the development of

time series models under the assumption of non-Gaussian distributions. Between them,
ref. [16] developed the Generalized Autoregressive Moving Average (GARMA) models. In
the GARMA approach, the conditional distribution of the fixed-time response variable t is
modeled by a distribution belonging to the exponential family, and one of the most used
generalization models is for positive series with Gamma distribution. After the proposal of
the GARMA model by [16], proposing new models that are not based on a Gaussian
structure was left aside. However, it has recently had an ascendancy in the literature,
ref. [17] addressed an autoregressive moving average model based on the Rayleigh
(RARMA) distribution for variables that assume values in positive reals. For variables that
assume values in the range (0, 1), ref. [18] they formulated a Beta autoregressive moving
average (β-ARMA) model, and in the studies of [19], the Kumaraswamy autoregressive
moving average (KARMA) model was introduced.

In the context of forecasting, usual models have already been used to model financial
market series to forecast economic indices [20], leasing value [21] and stock prices [22].
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Articles on trading volume forecasts have also been published recently, in the stock market
in India [23], ref. [24] in the real estate market. Therefore, time series analysis is a strategic
tool used to predict future trends and moreover, it helps investors to make decisions that
lead to good results and more profits.

The Burr II (BXII) is a distribution for random variables with support in the positive
real line and has the ability to represent asymmetric behaviors and heavy tails. These
characteristics make the BXII a suitable alternative both in survival analysis applications
and in economic, hydrological, and environmental indicators. It is in this context that the
present work is inserted, which aims to propose a new autoregressive moving average
model based on a reparametrization in terms of the quantiles of the BXII distribution.
This new class of model can help in the analysis and prediction of variables with these
asymmetry characteristics.

2. The Burr XII ARMA Model

This section defines the BXII autoregressive moving average (BXII-ARMA) model. For
that purpose, we consider the parametrization of the BXII distribution proposed by [25],
which is based on the quantities µ and τ, where µ is the τ–th quantile with τ ∈ (0, 1) a
known constant. This parameterization satisfies the relation d = − log(1− τ)/ log(1 + µc).
We provide a link to show the pdf forms that the reparameterized BXII can take (https:
//visionmt.shinyapps.io/RBXII/).

Let Y1, Y2, . . . be a sequence of random variables, where each Yt (t ∈ Z) assumes values
yt ∈ R+. Besides, let Ft be the σ-field generated by past observations {. . . , yt−2, yt−1, yt}
(i.e., the smallest σ-algebra such that the variables Y1, . . . , Yt are measurable). Additionally,
suppose that each Yt conditional on previous information set Ft−1 is distributed following
a BXII law with parameters c > 0 and µt, where µt is the conditional τ–th quantile of Yt.
Thus, the conditional pdf of Yt given Ft−1 is

g(yt|Ft−1) = log
(

1
1− τ

)
cyc−1

t
log(1 + µc

t )
(1 + yc

t )
log(1−τ)/ log(1+µc

t )−1, (1)

and we denote as Yt|Ft−1 ∼ BXII(µt, c).
The conditional cumulative distribution function (cdf) and conditional quantile

function (cqf) of Yt|Ft−1 are

G(yt|Ft−1) = 1− (1 + yc
t )

log(1−τ)/ log(1+µc
t ) (2)

and

Q(u|Ft−1) =
[
(1− u)log(1+µc

t )/ log(1−τ) − 1
]1/c

,

respectively.
The hth condition moment of Yt|Ft−1 can be expressed as

E(Yh
t |Ft−1) = −

log(1− τ)

log(1 + µc
t )

B
(
− log(1− τ)

log(1 + µc
t )
− hc−1, 1 + hc−1

)
,

where h < c [− log(1− τ)/ log(1 + µc
t )] and B(·) is the Beta function.

The dynamic general BXII-ARMA model has the following specification for the τ–th
conditional quantile

ηt = g(µt) = α + x>t β +
p

∑
i=1

φi

{
g(yt−i)− x>t−iβ

}
+

q

∑
j=1

θjrt−j, (3)
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where ηt is the linear predictor, α ∈ R is a constant, xt denotes the k-dimensional vector
containing the covariates at time t, β = (β1, . . . , βk)

> is a k-dimensional vector of
unknown coefficients associated to the covariates, g(·) is a strictly increasing and twice
differentiable link function that relates the linear predictor to the τ–th quantile. This
function has important purposes in interpreting the response variable. The
rt = g(yt) − g(µt) term correspond to the random error; φ = (φ1, . . . , φp)>, and
θ = (θ1, . . . , θq)> are the autoregressive and moving average coefficients, respectively.

3. Parameter Estimation

This section describes the estimation of the parameters of the model by conditional
maximum likelihood method. Let y1, . . . , yn be the random sample satisfying the
specification given by Equations (1) and (3) with δ = (α, β>, φ>, θ>, c)> denoting the
(2 + k + p + q)-dimensional parametric vector. The log-likelihood function of the
BXII-ARMA model is expressed as

` = `(δ; yt|Ft−1) =
n

∑
t=m+1

`t(µt, c), (4)

where

`t(µt, c) = log

 c log
(

1
1−τ

)
log(1 + µc

t )

+ (c− 1) log(yt) +

[
log(1− τ)

log(1 + µc
t )
− 1
]

log(1 + yc
t ),

µt = g−1(ηt), and ηt is defined in Equation (3). Note that Equation (4) holds, once `t(µt, c)
is null for the first m = max(p, q) observations of yt.

The conditional maximum likelihood estimators (CMLE), δ̂ for δ are obtained through
the maximization of Equation (4). Furthermore, the CMLE are obtained by equalizing
the score vector to zero and solving the resulting system of equations. The calculations
for the conditionals score vector and Fisher’s information matrix, and the construction of
confidence intervals and hypothesis testings for the BXII-ARMA model were implemented
in R programming language.

4. Numerical Results

This section presents an empirical application of the BXII-ARMA to datasets related to
the financial market. Furthermore, the ARMA [26], GARMA [16], and RARMA [17] models
are also fitted for comparative purposes. The function arima() is used to the ARMA fit. The
implementation of the GARMA and RARMA models is similar to the BXII-ARMA model
and is available in the PTSR package using the ptsr.fit() function. For more information,
see [27]. The application is implemented in the R software. The dataset refers to the trading
volume of the Banco Bradesco S.A. (BBD) stocks and was collected from the Yahoo Finance
website (https://finance.yahoo.com/most-active), which provides up-to-date financial
news, international market data, including stock quotes, financial reports and original
content. The information corresponds from 14 February 2022, to 10 February 2023, totaling
250 observations. The trading volume corresponds to the number of stocks bought and sold
in a day, and the standard unit of these assets is given in U.S. Dollars (US$). Since trading
volumes are usually large-scale numbers, we divided the series by one hundred million
to better visualize the results. The last thirty observations of the series were removed to
obtain the Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean
Absolute Scaled Error (MASE) measures to choose the most accurate model. The forecast is
estimated by one-step-ahead, updated by the actual value.

Figure 1 shows the graphs of the BBD trading volume serie. Figure 2 shows the
autocorrelation function (ACF) and partial autocorrelation (PACF) plots of the BBD trading
volume. Figure 2a, it is noted that the vast majority of observations are outside the
confidence interval (CI). In the PACF, shown in Figure 2b, almost all observations are within

https://finance.yahoo.com/most-active
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the CI. The series was identified as stationary through the unit root tests, Phillips-Perron
(PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) with p-values equal to 0.01 and 0.1,
respectively. Thus, the ARMA, GARMA, RARMA, and BXII-ARMA models were adjusted
to choose the model that best represented the behavior of the studied serie. The best fit of
each model class is selected through the AIC, BIC, and HQ measures. After, the best fit of
each class, the model with the best prediction is chosen.
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Figure 1. Time series plot of BBD trading volume.

0.00 0.02 0.04 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(a) ACF

0.01 0.03 0.05

−
0.

1
0.

1
0.

3
0.

5

Lag

P
ar

tia
l A

C
F

(b) PACF

Figure 2. ACF and PACF of BBD trading volume.

Table 1 shows the fit of the models with the parameter estimates, the standard errors
(SE), and the p-values of each estimate. The structure for the BBD trading volume is given
by one autoregressive coefficient and four moving average filters, namely ARMA(1,4),
GARMA(1,4), RARMA(1,4), and BXII-ARMA(1,4). For the ARMA model, only the intercept
was significant. For the GARMA and RARMA models, all coefficients were significant,
except for the autoregressive φ1 and the moving average coefficient θ4. All coefficients
of the BXII-ARMA model were significant at the 5% significance level. Table 2 presents
the adequacy measures adopted as methodologies for comparing forecast performance
between the different best-fitted models in each class. Therefore, the MSE, MAPE, and
MASE measurements are calculated for all models, considering the thirty-day out-of-sample
estimates with the last thirty observations taken from the series. Therefore, the best results
of the accurate measurements are given by the BXII-ARMA model for the data sets.

Figure 3 shows the residuals BXII-MA(1,4) plots to the BBD trading volume. In
Figure 3a, the quantile residuals show the absence of the tendency, and their behavior is
similar to white noise. Figure 3b,c, have the ACF and PACF of the residuals that confirm
that they are similar to white noise. Figure 4 provides a plot of the actual and adjusted
values. Figure 4 shows the observed and adjusted values of the BBD trading volume. All
analyzed graphs show that BXII-ARMA models adjusted to BBD trading volume can be
used to make step-ahead predictions of the considered sample.
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Table 1. ARMA, GARMA, RARMA, and BXII-ARMA adjustments in the time serie.

ARMA(1,4) GARMA(1,4)

Coef. Estimate SE p-value Coef. Estimate SE p-value

Int. 0.3558 0.0189 0.0000 α −1.0887 0.1188 0.0000
φ1 −0.2537 2.4091 0.9161 φ1 −0.0280 0.0971 0.7730
θ1 0.8051 2.4058 0.7379 θ1 1.4578 0.1434 0.0000
θ2 0.5003 1.3250 0.7057 θ2 1.0380 0.2281 0.0000
θ3 0.4213 0.8648 0.6261 θ3 1.0413 0.1716 0.0000
θ4 0.0881 0.7846 0.9106 θ4 −0.0078 0.1746 0.9640
_ _ _ _ ϕ 11.5539 1.0861 0.0000

RARMA(1,4) BXII-ARMA(1,4)

Coef. Estimate SE p-value Coef. Estimate SE p-value

α −1.3357 0.1799 0.0000 α −0.6286 0.0880 0.0000
φ1 0.3683 0.5293 0.4866 φ1 0.3398 0.0663 0.0000
θ1 1.2574 0.3980 0.0016 θ1 0.3705 0.0541 0.0000
θ2 1.0528 0.4046 0.0093 θ2 0.2454 0.0651 0.0002
θ3 1.1475 0.3057 0.0002 θ3 0.2801 0.0611 0.0000
θ4 −0.0185 0.3283 0.9549 θ4 0.2361 0.0626 0.0002
_ _ _ _ c 3.7013 0.1806 0.0000

Table 2. Forecasting performance comparison among different the best fitted models in each class.

Model MSE MAPE MASE

ARMA 0.0555 0.4233 0.8224
GARMA 0.0567 0.4129 0.8215
RARMA 0.0676 0.3834 0.8679

BXII-ARMA 0.0071 0.1491 0.3020
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Figure 3. Residual diagnostic plots of the fitted BXII-MA(1,4) model for the trading volume of BBD.
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Figure 4. Observed and adjusted values of the BXII-ARMA model.

5. Concluding Remarks

This study proposes an autoregressive moving averages model based on a quantile
parameterization of the Burr XII distribution. We carried out an economic application
using the trading volume of Banco Bradesco stock to verify the adequacy of the proposed
model. The proposed model is compared with other models of time series to verify its
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goodness of fit to the dataset used. We show some results for the mathematical properties
of the proposed model, such as conditional moments and probability density, cumulative
distribution, and conditional quantile functions. In addition, we estimated the model’s
parameters by the maximum likelihood method. An application of time series was carried
out using a real dataset, referring to the BBD trading volume, and BXII-ARMA(1,4) was
fitted The BXII-ARMA model was adjusted to the data and the predicted values were
obtained close to the real values of the series. It was also verified that, through the MSE,
MAPE, and MASE measures, the BXII-ARMA model surpassed the ARMA, GARMA, and
RARMA models, being a useful and flexible alternative for the adjustment of non-negative
time series and with asymmetric patterns. Thus, the BXII-ARMA model is adequate
to satisfactorily capture the dynamics of Banco Bradesco trading volume. It should be
noted that the BXII-ARMA is a new methodology whose applicability can be extended to
other topics.
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