

MDPI

Proceeding Paper

Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations [†]

Sushanta Man*, Bidhan Chandra Saw, Anupama Bairagi and Subhendu Bikash Hazra

Bankura University , Bankura , West Bengal , India; bku.univ@gmail.com ; email1@email.com (B.C.S.); email2@email.com (A.B.); email3@email.com (S.B.H.)

- * Correspondence: sushantazman@gmail.com
- † Presented at the 1st International Online Conference on Mathematics and Applications; Available online: https://iocma2023.sciforum.net/.

Abstract: In this paper, we investigate intuitionistic fuzzy Poisson equation with uncertain parameters, considering the parameters as intuitionistic fuzzy numbers. We apply a finite difference method to solve 'Intuitionistic fuzzy Poisson equation'. The continuity of the membership and non-membership functions (which imply the continuity of the hesitancy function) is used to obtain qualitative properties on regular α -cut and β -cut of the intuitionistic fuzzy solution. The fuzzification of the deterministic α -cut and β -cut solutions obtained lead to the intuitionistic fuzzy solution. Finally, an example is presented to illustrate the proposed methodology as well as to show a graphical representation of its corresponding intuitionistic fuzzy solution.

Keywords: intuitionistic fuzzy number; fuzzy Poisson equation; finite difference scheme

1. Introduction

One of the fruitful ways of modelling uncertainty and imprecision in particular quantities for certain real-life problems, is Intuitionistic Fuzzy Partial Differential Equations (IFPDEs). IFPDEs have essential applications in diverse fields, such as physics, biology, chemistry, and engineering. We propose a method for the approximate solution of IFPDE using Finite Difference Method. In [1], J. Buckley and T. Feuring introduced a method for the solution of the fuzzy partial differential equation. In [2], T. Allahvironloo used a numerical method to solve the Fuzzy Partial differential equation that was based on the Seikala derivative. C. Samuel and V. Stefen used a numerical method to solve elliptic FPDE using a polynomial Galerkin approximation. In [3], Man et al. applied the finite difference method to solve intuitionistic fuzzy heat equation. An Intuitionistic fuzzy set is an extension of the fuzzy set defined in a domain of discourse. We may get better result using IFPDEs rather than FPDEs.

This paper presents a new approach to finding the numerical solution of the intuitionistic fuzzy elliptic equation. We solve the Poisson equation using the finite difference method with intuitionistic fuzzy parameters.

2. Materials and Methods

In the following we consider the Poisson equation

$$(D_x^2 + D_y^2)\tilde{U} = \tilde{F}(x, y, \tilde{K}), \tag{1}$$

Let us consider \tilde{U} and \tilde{F} to be a fuzzy function of the independent crisp variables x and y. We define the domain

$$R = [(x,y) : (x,y) \in I_1 X I_2]$$
 (2)

Citation: Man, S.; Saw, B.C; Bairagi, A.; Hazra, S.B. Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations.

Comput. Sci. Math. Forum 2023, 1, 0. https://doi.org/

Academic Editors:

Published: 28 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

 $A(\alpha, \beta)$ -cuts of $\tilde{U}(x, y)$ and its parametric form will be

$$\widetilde{U}(x,y)[\alpha,\beta] = <[\underline{U}(x,y;\alpha),\overline{U}(x,y;\alpha)], \ [\underline{U}'(x,y;\beta),\overline{U}'(x,y;\beta)]>. \tag{3}$$

We suppose that $\underline{U}(x,y;\alpha), \overline{U}(x,y;\alpha), \underline{U}'(x,y;\beta)$ and $\overline{U}'(x,y;\beta)$ have continuous partial derivatives with respect to x and y, therefore $(D_x^2 + D_y^2)\underline{U}(x,y;\alpha)$,

 $(D_x^2 + D_y^2)\overline{U}(x,y;\alpha)$, $(D_x^2 + D_y^2)\underline{U'}(x,y;\beta)$ and $(D_x^2 + D_y^2)\overline{U'}(x,y;\beta)$ are continuous for all $(x,y) \in R$, for all $\alpha \in [0,1]$, for all $\beta \in [0,1]$.

Equation (1) can be decomposed as

$$(D_x^2)\underline{U} + (D_y^2)\underline{U} = \underline{F}(x, y, \tilde{K}), \tag{4}$$

$$(D_x^2)\overline{U} + (D_y^2)\overline{U} = \overline{F}(x, y, \tilde{K}), \tag{5}$$

$$(D_x^2)\underline{U}' + (D_y^2)\underline{U}' = \underline{F}(x, y, \tilde{K}), \tag{6}$$

$$(D_x^2)\overline{U'} + (D_y^2)\overline{U'} = \overline{F}(x, y, \tilde{K}), \tag{7}$$

for all $(x,y) \in I_1 \times I_2$, for all $\alpha \in [0,1]$ and for all $\beta \in [0,1]$.

We subdivide the intervals $I_1 = [0,1]$, $I_2 = [0,1]$ into N equal subintervals of length $h = \frac{1}{N}$ then the points $x_i = ih, i = 0, 1, 2, ..., N - 1$ and $y_j = jh, j = 0, 1, 2, ..., N - 1$.

Denote the value of \tilde{U} at the representative mesh point P(ih, jh) by

$$\tilde{U}_P = \tilde{U}(ih, jh) = \tilde{U}_{i,j} \tag{8}$$

and also denote the parametric form of intuitionistic fuzzy number $\tilde{U}_{i,j}$, involving the parameters α and β , as

$$\widetilde{U}_{i,j} = \langle [\underline{u}_{i,j}(\alpha), \overline{u}_{i,j}(\alpha)], [\underline{u}'_{i,j}(\beta), \overline{u}'_{i,j}(\beta)] \rangle.$$
(9)

Then, we have

$$(D_x^2)\tilde{U}(x,y) = <[D_x^2\underline{U}(x,y;\alpha), D_x^2\overline{U}(x,y;\alpha)], [D_x^2\underline{U}'(x,y;\beta), D_x^2\overline{U}'(x,y;\beta)]>, \qquad (10)$$

$$(D_y^2)\tilde{U}(x,y) = <[D_y^2\underline{U}(x,y;\alpha), D_y^2\overline{U}(x,y;\alpha)], [D_y^2\underline{U}'(x,y;\beta), D_y^2\overline{U}'(x,y;\beta)]>, \qquad (11)$$

Following [2], using Taylor's theorem and definition of standard difference formula we obtain

$$D_x^2 \underline{U}(x, y; \alpha)|_{i,j} \simeq \frac{\underline{u}_{i+1,j} - 2\underline{u}_{i,j} + \underline{u}_{i-1,j}}{h^2},$$
 (12)

$$D_x^2 \overline{U}(x, y; \alpha)|_{i,j} \simeq \frac{\overline{u}_{i+1,j} - 2\overline{u}_{i,j} + \overline{u}_{i-1,j}}{h^2}, \tag{13}$$

$$D_x^2 \underline{U'}(x, y; \beta)|_{i,j} \simeq \frac{\underline{u'}_{i+1,j} - 2\underline{u'}_{i,j} + \underline{u'}_{i-1,j}}{h^2},$$
 (14)

$$D_x^2 \overline{U'}(x, y; \beta)|_{i,j} \simeq \frac{\overline{u'}_{i+1,j} - 2\overline{u'}_{i,j} + \overline{u'}_{i-1,j}}{h^2}, \tag{15}$$

with a leading error of $O(h^2)$. Similarly, using the notation of forward difference approximation for $(D_y^2)\tilde{U}$ at P, we have

$$D_y^2 \underline{U}(x, y; \alpha)|_{i,j} \simeq \frac{\underline{u}_{i,j+1} - 2\underline{u}_{i,j} + \underline{u}_{i,j-1}}{h^2}, \tag{16}$$

$$D_y^2 \overline{U}(x, y; \alpha)|_{i,j} \simeq \frac{\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}}{h^2}, \tag{17}$$

$$D_{y}^{2}\underline{U'}(x,y;\beta)|_{i,j} \simeq \frac{\underline{u'}_{i,j+1} - 2\underline{u'}_{i,j} + \underline{u'}_{i,j-1}}{h^{2}},$$
(18)

$$D_y^2 \overline{U'}(x, y; \beta)|_{i,j} \simeq \frac{\overline{u'}_{i,j+1} - 2\overline{u'}_{i,j} + \overline{u'}_{i,j-1}}{h^2}, \tag{19}$$

with a leading error of $O(h^2)$.

Using (12)–(19) the finite difference scheme for Poisson equation reads as

$$\frac{\underline{u}_{i,j+1} - 2\underline{u}_{i,j} + \underline{u}_{i,j-1}}{h^2} + \frac{\underline{u}_{i+1,j} - 2\underline{u}_{i,j} + \underline{u}_{i-1,j}}{h^2} = \underline{F}(x, y, \tilde{K}), \tag{20}$$

$$\frac{\overline{u}_{i,j+1} - 2\overline{u}_{i,j} + \overline{u}_{i,j-1}}{h^2} + \frac{\overline{u}_{i+1,j} - 2\overline{u}_{i,j} + \overline{u}_{i-1,j}}{h^2} = \overline{F}(x, y, \tilde{K}), \tag{21}$$

$$\frac{\underline{u'_{i,j+1} - 2\underline{u'_{i,j} + \underline{u'_{i,j-1}}}}{h^2} + \frac{\underline{u'_{i+1,j} - 2\underline{u'_{i,j} + \underline{u'_{i-1,j}}}}{h^2} = \underline{F}(x, y, \tilde{K}), \tag{22}$$

$$\frac{\overline{u'}_{i,j+1} - 2\overline{u'}_{i,j} + \overline{u'}_{i,j-1}}{h^2} + \frac{\overline{u'}_{i+1,j} - 2\overline{u'}_{i,j} + \overline{u'}_{i-1,j}}{h^2} = \overline{F}(x, y, \tilde{K}). \tag{23}$$

This can be written as

$$\underline{u}_{i,j} = \frac{1}{4} [\underline{u}_{i+1,j} + \underline{u}_{i-1,j} + \underline{u}_{i,j+1} + \underline{u}_{i,j-1} - h^2 \underline{F}(x, y, \tilde{K})]$$
(24)

$$\overline{u}_{i,j} = \frac{1}{4} [\overline{u}_{i+1,j} + \overline{u}_{i-1,j} + \overline{u}_{i,j+1} + \overline{u}_{i,j-1} - h^2 \overline{F}(x, y, \tilde{K})]$$
(25)

$$\underline{u'}_{i,j} = \frac{1}{4} [\underline{u'}_{i+1,j} + \underline{u'}_{i-1,j} + \underline{u'}_{i,j+1} + \underline{u'}_{i,j-1} - h^2 \underline{F}(x, y, \tilde{K})]$$
 (26)

$$\overline{u'}_{i,j} = \frac{1}{4} [\overline{u'}_{i+1,j} + \overline{u'}_{i-1,j} + \overline{u'}_{i,j+1} + \overline{u'}_{i,j-1} - h^2 \overline{F}(x, y, \tilde{K})]$$
(27)

3. Results

Consider the fuzzy Poisson's equation. This example can be found in [2]

$$\frac{\partial^2 \tilde{U}}{\partial x^2}(x,y) + \frac{\partial^2 \tilde{U}}{\partial y^2}(x,y) = \tilde{F}(x,y,\tilde{K}), \quad 0 < x < 2, \quad 0 < y < 1, \tag{28}$$

where

$$\tilde{F}(x, y, \tilde{K}) = \tilde{k}xe^y, \tag{29}$$

and

$$\tilde{k}[\alpha,\beta] = \langle [\underline{k}(\alpha),\overline{k}(\alpha)], [\underline{k}(\beta),\overline{k}(\beta)] \rangle = \langle [0.75 + 0.25\alpha, 1.25 - 0.25\alpha], [1 - 0.5\beta, 1 + 0.5\beta] \rangle. \tag{30}$$

with the boundary conditions

$$\tilde{U}(0,y) = 0, \quad \tilde{U}(2,y) = 2\tilde{k}e^{y}, \quad 0 \le y \le 1,$$
 (31)

$$\tilde{U}(x,0) = \tilde{k}x, \quad \tilde{U}(x,1) = \tilde{k}ex, \quad 0 \le x \le 2.$$
 (32)

The exact solutions for

$$\frac{\partial^2 \underline{U}}{\partial x^2}(x, y; \alpha) + \frac{\partial^2 \underline{U}}{\partial y^2}(x, y; \alpha) = \underline{k}(\alpha)xe^y, \quad 0 < x < 2, \quad 0 < y < 1, \tag{33}$$

$$\frac{\partial^2 \overline{U}}{\partial x^2}(x, y; \alpha) + \frac{\partial^2 \overline{U}}{\partial y^2}(x, y; \alpha) = \overline{k}(\alpha) x e^y, \quad 0 < x < 2, \quad 0 < y < 1, \tag{34}$$

$$\frac{\partial^2 \underline{U'}}{\partial x^2}(x, y; \beta) + \frac{\partial^2 \underline{U'}}{\partial y^2}(x, y; \beta) = \underline{k}(\beta)xe^y, \quad 0 < x < 2, \quad 0 < y < 1, \tag{35}$$

$$\frac{\partial^2 \overline{U'}}{\partial x^2}(x, y; \beta) + \frac{\partial^2 \overline{U'}}{\partial y^2}(x, y; \beta) = \overline{k}(\beta)xe^y, \quad 0 < x < 2, \quad 0 < y < 1, \tag{36}$$

are, respectively

$$\underline{U}(x,y;\alpha) = \underline{k}(\alpha)xe^{y},\tag{37}$$

$$\overline{U}(x,y;\alpha) = \overline{k}(\alpha)xe^y, \tag{38}$$

$$\underline{U}'(x,y;\beta) = \underline{k}(\beta)xe^{y},\tag{39}$$

$$\overline{U'}(x,y;\beta) = \overline{k}(\beta)xe^y, \tag{40}$$

3.1. Graphical Representation of Approximate and Exact Solution of the Given Example:

4. Conclusions

We have used Equations (24)–(27) to approximate the exact solutions with h = 0.025 and k = 0.01. Figure 1 shows the approximate and exact solution at the point (0.5, 0.25) for each $\alpha \in (0,1)$.

Figure 1. The intuitionistic fuzzy solution of Poisson equation.

5. Discussion

The intuitionistic fuzzy partial differential equation can be applied for modelling in physics, engineering, and mechanical system. In this paper, we have developed a finite difference method to solve the intuitionistic fuzzy Poisson equation. Future work may focus on intuitionistic fuzzy partial differential equations to more realistic applications from practice.

Author Contributions:

Funding:

Institutional Review Board Statement:

Informed Consent Statement:

Data Availability Statement:

Acknowledgments:

Conflicts of Interest:

References

- 1. Buckly, J.J.; Feuring, T. Fuzzy differential equations. Fuzzy Sets Syst. 2000, 100, 43–54.
- 2. Allahviranloo, T. Difference methods for fuzzy partial differential equations. Comput. Methods Appl. Math. 2002, 2, 233–242.
- 3. Man, S.; Saw, B.C.; Hazra, S.B. An explicit method for solving intuitionistic fuzzy heat equation. *Adv. Fuzzy Math. (AFM)* **2021**, *16*, 27–39.
- 4. Abbasbandy, S. A method for solving fuzzy linear system. *Iran. J. Fuzzy Syst.* **2005**, 2, 37–43.
- 5. Kermani, A.; Saburi, F. Numerical methods for fuzzy linear partial differential equations. Appl. Math. Comput. 2007, 27, 1299–1309.
- 6. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
- 7. Atanassov, K.T. Ideas for Intuitionistic Fuzzy Sets, Equations, Inequations and Optimization. *Notes Intuitionistic Fuzzy Sets* **1995**, 1, 17–24.

- 8. Mahapatra, G.S.; Roy, T.K. Intuitionistic fuzzy number and its arithmetic operation with application on system failure. *J. Uncertain Syst.* **2013**, *7*, 92–107.
- 9. Pradhan, R.; Pal, M. Solvability of System of intuitionistic fuzzy linear equations. Int. J. Fuzzy Log. Syst. 2014, 4, 13–24.
- 10. Seikh, M.R.; Nayak, P.K.; Pal, M. Notes on triangular intuitionistic fuzzy numbers. Int. J. Math. Oper. Res. 2013, 5, 446–465.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.