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Abstract: Numerous lifetime distributions have been developed to assist researchers in various 

fields. This paper proposes a new continuous three-parameter lifetime distribution called the com-

plementary gamma zero-truncated Poisson distribution (CGZTP), which combines the distribution 

of the maximum of a series of independently identical gamma-distributed random variables with 

zero-truncated Poisson random variables. The proposed distribution’s properties, including proofs 

of the probability density function, cumulative distribution function, survival function, hazard func-

tion, and moments, are discussed. The unknown parameters are estimated using the maximum like-

lihood method, whose asymptotic properties are examined. In addition, Wald confidence intervals 

are constructed for the CGZTP parameters. Simulation studies are conducted to evaluate the efficacy 

of parameter estimation, and a real-world application demonstrates the application of the proposed 

distribution. 
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1. Introduction 

The gamma distribution is widely used in modeling lifetime data. However, the 

gamma distribution does not provide a reasonable parametric fit for modeling phenom-

ena with non-monotone hazard rates, such as upside-down bathtub hazard rates. Some 

new distributions to model lifetime data have appeared in recent literature by compound-

ing existing lifetime models with several discrete distributions. For instance, a distribution 

is obtained by assuming the minimum or maximum of continuous positive random vari-

ables. To accomplish this, Adamidis and Loukas [1] proposed an exponential-geometric 

(EG) distribution by compounding the geometric distribution and the exponential distri-

bution. A complementary version of the EG distribution proposed by Louzada et al. [2], 

which would be applied to maximum lifetime data. The Weibull-geometric (WG) distri-

bution with the minimum compounded function proposed by Barreto-Souza et al. [3] and 

its maximum version given by Tojeiro et al. [4]. Zakerzadeh and Mahmoudi [5] intro-

duced a Lindley-geometric (LG) distribution, whereas Gui and Guo [6] introduced a com-

plementary Lindley-geometric distribution. In addition, several new compoundings of 

Poisson distribution and some lifetime models have been introduced in closed forms, such 

as Kus [7], who proposed an exponential-Poisson (EP) distribution, Hemmati et al. [8], Lu 

and Chi [9], who proposed a Weibull-Poisson (WP), whose complementary version was 

given by Ismail [10]. Also, Alkarni and Oraby [11] introduced a Rayleigh-Poisson distri-

bution, and Gui et al. [12] proposed a Lindley-Poisson distribution. 

A novel distribution is established as the complementary gamma zero-truncated 

Poisson distribution (CGZTP). This paper is structured as follows: In Part 2, the distribu-

tion is mathematically derived, and in Section 3, its important properties are examined. 
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In Sections 4 and 5, the estimates of the parameters and the results of a simulation study 

are presented. 

2. The Complementary Gamma Zero-Truncated Poisson Distribution 

Let 1 2
, , ,

N
X X X  be independent and identically distributed random variables 

from a gamma distribution which probability density function (pdf) given by 

( )−−= 1( ; , ) Γ ,   0βxα αf x α β β x e α x , where  0α  is a shape parameter and  0β  is a rate 

parameter, and N  is a random variable from zero-truncated Poisson distribution with 

probability mass function ( )− −= = − =( ) ! 1 ,  1,2,λ n λP N n e λ n e n and >0λ . Assuming 

that random variables X  and N  are independent, we define  =
1 2

max , , ,
N

Z X X X . 

Then, ( )
−

 =  

1

( ) ( )
n

g z n n F z f z , where ( ) ( ) ( )= −1 Γ , ΓF z α βz α and the marginal distribu-

tion for Z is 

where ( )=θ , ,λ α β . The distribution of Z will be referred to as CGZTP and plots of its 

pdf are displayed in Figure 1 for selected parameter values. For = 1α , the CGZTP distri-

bution reduces to the density of the complementary exponential-Poisson distribution in-

troduced by Cancho et al.[13]. Asλ  approaches to 0, the CGZTP distribution reduces to 

two-parameter gamma distribution. 

  

Figure 1. Probability density functions of the CGZTP distribution for (a) 0.5α = and (b) 2α = . 

3. Properties of the Distribution 

3.1. Cumulative Distribution Function, Quantile and Moment 

The cumulative distribution function (cdf) of the CGZTP distribution is given by 

 and the thr quantile is defined as the value z  such that 

( ) ( )( )Γ( , ) Γ ln 1 λα βz α r r e λ−= − + −   

( ) ( )
( )

 
−−  − −
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−
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1 1

Γ
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βzα αλ λ
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β z eλe
g z e

αe
, , , , 0z λ α β , (1) 
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−

− −
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θ

Γ( , )

Γ
( ; ) 1
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α λ λG z e e e , (2) 
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In particular, the median is z  such that ( ) ( )−= − +Γ( , ) Γ ln 0.5 0.5 λα βz α e λ . Also, 

the moment generating function can be calculated from 

The k  raw moments are given by 

3.2. Survival Function and Hazard Function 

Using Equations (1) and (2), the survival and hazard functions of the CGZTP distri-

bution are given by ( ) ( )
−

−
 
 = − = − −
 
 

θ θ

Γ( , )

Γ
( ; ) 1 ( ; ) 1 1

λ α βy

α λS z G z e e  and 

( )

( ) ( )

− −
−

−

= =
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 −
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( ; )

( ; )
Γ 1

λ α βz
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αα α
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α

g z λβ z e
H z

S z
α e

, respectively. If considering 

( ) ( ) ( ) ( ) ( ) −= − = −  − − +;θ ;θ 1 1
α βzη z g z g z z α βz λ βz e ( )Γ α  and 

( )
( )

( ) ( ) ( ) ( ) −  = − + − +
  2

1
1 Γ 1

Γ

α βzη z α α λ βz βz α e
α z

. For = 1α , ( )  0η z  for all z , 

CGZTP distribution has an increasing hazard function that follows from Glaser [14]. Fig-

ure 2 illustrates some of the possible shapes of the hazard function for selected values of 

θ . 

  

Figure 2. Hazard functions of the CGZTP distribution for (a) 2α = and (b) 2,  1λ β= = . 

4. Parameter Estimation 

4.1. Method of Maximum Likelihood 

The log-likelihood function based on the observed random sample size of n , 

( )=
1 2
, , ,

obs n
w z z z  is the following: 

( )( )
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 − −
−
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and the corresponding gradients are found to be 

( )
( )( ) ( ) ( )

1
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n
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where 0
( )ψ α is a digamma function and 
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a a
G βz

b b
 is Meijer G-function. The 

Equation (5) could be solved exactly for λ , namely 
( )
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=

 
= − 

 
 



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 condi-

tional upon the value of α̂  and β̂ , where λ̂ , α̂  and β̂ are maximum likelihood estimates 

for the parameter λ , α  and β , respectively. 

In the following theorem, some conditions are needed to be satisfied for the existence 

and uniqueness of the MLEs. 

Theorem 1. Let ( ) ( )=  θ
1

; , , ;
obs obs

l λ α β w l w λ , If α  and β  are known, then λ̂  is the 

uniquely exist root of ( ) =1
; , , 0
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=


1

Γ , Γ
2

n

i
i
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and use the fact that = + + + +2 31 1
1
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λe λ λ λ and − = − + − +2 31 1
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λ λe e λ λ λ . It follows that ( )1
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l  is strictly 

decreasing in λ . Consequently, the root is proved to be unique. □ 
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4.2. Variance-Covariance Matrix of the MLEs 

The MLE of θ  is approximately multivariate normal with a mean θ  and a vari-

ance-covariance matrix which is Fisher information matrix, i.e., ( )
1

3
ˆ ˆ,N J

− 
 
 

θ θ θ  or 

( )
− 

 
 

1

3
ˆ ˆ, ,N Iθ θ θ  where ( ) ( ) =  θ θJ E I , ( )θI  is the observed Fisher information ma-

trix. By differentiating Equations (3)–(5), the elements of the observed Fisher information 

matrix are derived as follow: 

−= + − +2

11
( ( 2)) ,λ λ λ λI ne e e λ e   
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To test the null hypothesis =θ θ
0 0

:H , we can use Wald statistics: 

( ) ( ) ( )
1/2

0 3 3
ˆ ˆ - 0,J N Iθ θ θ  or ( ) ( ) ( )

1/2

0 3 3
ˆ ˆ - 0,I N Iθ θ θ . 

The asymptotic distribution of the ith component of θ̂  is ( )ˆ , ii

i i
θ N θ J  or 

( )ˆ , ii

i i
θ N θ I , where ( )

− 
=   

1
ˆii

ii

J J θ  and ( )
− 

=   

1
ˆii

ii

I I θ . Then, the corresponding 

( )−1 100%α  Wald confidence intervals for i
θ  are 

−


1 /2
ˆ ii

i α
θ z J or 

−


1 /2
ˆ ii

i α
θ z I . 

5. Simulation Study and Application 

The study utilized 1000 simulated samples of 50, 100, and 1000. Table 1 shows the 

average MLEs of ,  λ α , and β , and their MSEs when all parameters are unknown. As 

sample sizes increase, estimates become more accurate and MSE values decrease. Among 

three estimates, β̂  tends to have smallest MSE.  

Wald confidence intervals using observed Fisher information are constructed for all 

parameters of CGZTP. Monte Carlo simulations with 1000 repetitions help estimate the 

coverage probability (CP) and average length (AL) of the confidence intervals (CIs). All 
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results are presented in Table 2. It is found that when the sample size ( n ) increases, the 

CPs will be close to the nominal coverage probability, 0.95, and the ALs will decrease. If 

λ  has a small value, i.e., 0.5λ = , n  is required to be 1000 to achieve the nominal cover-

age probability. In most cases, coverage probabilities are close to 0.95. 

Table 1. Mean estimates and mean-squared errors of ,  ,λ α  and β . 

Distribution n  
Mean Estimate MSE 

λ̂  α̂  β̂  λ̂  α̂  β̂  

CGZTP(1,2,1) 50 1.7122 1.9225 1.0064 5.3198 0.4782 0.0519 

 100 1.6464 1.8901 0.9864 4.5325 0.3659 0.0272 

 1000 1.0225 2.0003 0.9965 0.3992 0.0523 0.0025 

CGZTP(3,1,0.5) 50 2.2571 1.4061 0.5503 4.4487 0.5402 0.0193 

 100 2.4622 1.2759 0.5294 3.4684 0.3293 0.0092 

 1000 2.9382 1.0504 0.5049 0.8841 0.0597 0.0015 

CGZTP(3,0.5,0.5) 50 2.3268 0.7150 0.5386 4.5848 0.1518 0.0165 

 100 2.5139 0.6553 0.5265 3.6790 0.0981 0.0086 

 1000 2.7430 0.5561 0.5098 0.7855 0.0159 0.0010 

For real-world use, the dataset is obtained from Proschan [15], and it is made up of 

213 observations about how many times the air conditioning system on each of 13 Boeing 

720 jet planes failed in a row. The CGZTP distribution was applied to the data, and 

ˆ 0.11λ = , ˆ 0.84,α = ˆ 0.01β = . The Kolmogorov-Smirnov (K-S) statistic is 0.05611 with p-val-

ues of 0.5230; therefore, the CGZTP distribution is useful for this data. 

Table 2. Coverage probabilities and average lengths of Wald CIs. 

( ), ,  =θ  n  CP AL 

0.5, 3 = =  

1 =  

50 0.9130 1.4147 

100 0.9090 1.0495 

1000 0.9530 0.3411 

2 =  

50 0.9020 2.6400 

100 0.8880 1.9795 

1000 0.9550 0.6626 

1, 3 = =  

0.5 =  

50 0.9800 6.0251 

100 0.9610 4.5462 

1000 0.9520 1.3820 

1 =  

50 0.9840 6.2418 

100 0.9580 5.2028 

1000 0.9560 1.7814 

1, 0.5 = =  

0.5 =  
50 0.9670 0.5587 

100 0.9640 0.3832 

1000 0.9470 0.1144 

1 =  
50 0.9710 1.0991 

100 0.9630 0.7861 

1000 0.9530 0.2311 

6. Conclusions 

Gamma and zero-truncated Poisson are compounded to create the CGZTP distribu-

tion. The probability density function and hazard function plots showed this distribu-
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tion’s flexibility. The MLEs and the corresponding variance-covariance matrix are mathe-

matically derived. Furthermore, a simulation study was also conducted. Finally, the 

CGZTP model was applied to real data to demonstrate the distribution’s utility. 
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