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Abstract: The goal of the present work is to estimate the nonlinear correlation between two random
variables when the sample is drawn from a Farlie-Gumbel-Morgenstern (FGM) type bivariate gamma
distribution. In the context of estimating dependence parameter, maximum likelihood (ML) method-
ology is used. Thus, the present work offers ML estimators based on simple random sampling (SRS)
and ranked set sampling (RSS). Also, we consider generalized modified RSS (GMRSS), which only
requires a single rank to obtain a sample. Using GMRSS, we aim to observe the effect of rth order
statistic and its concomitant on the ML estimator. According to the Monte Carlo simulation, it is
clearly seen that RSS provides an ML estimator as efficient as the ML estimator based on SRS. On
the other hand, it is appeared that the ML estimator based on GMRSS (with minimum or maximum
ranked pairs) is the best option among the studied ML estimators. Moreover, these findings are made
even more meaningful by the fact that GMRSS is easier to obtain than SRS and RSS.

Keywords: ranked set sampling; algorithm for sampling data; order statistics; dependence parameter;
FGM family; maximum likelihood estimation

MSC: 62D99; 62F10; 62G30; 62H05; 65C05

1. Introduction

Farlie-Gumbel-Morgenstern (FGM) is a quite attractive distribution family since its
simple form and provide a modelling the dependence between two random variables.
The family was introduced by Morgenstern [1], Gumbel [2] and Farlie [3]. Several re-
searchers have studied on FGM distribution family, see [4–10]. D’Este [11] and Gupta &
Wong [12] discussed bivariate gamma distribution, which is derived from FGM family.
The joint cumulative distribution function (CDF) of the random variables X and Y on R2 is
given by

H(x, y) = F(x)G(y)[1 + λ(1− F(x))(1− G(y))] (1)

with the corresponding joint probability density function (PDF)

h(x, y) = f (x)g(y)[1 + λ(1− 2F(x))(1− 2G(y))] (2)

where f (x) and g(y) are gamma PDFs,

f (x) =
1

Γ(α)
e−xxα−1, x > 0, α ≥ 0, (3)
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g(y) =
1

Γ(β)
e−yyβ−1, y > 0, β ≥ 0, (4)

with their CDFs F(x) and G(y),

F(x) =
γ(α, x)

Γ(α)
, G(y) =

γ(β, y)
Γ(β)

(5)

Also, λ is a dependence parameter with −1 ≤ λ ≤ 1. The random variables are said
to be independent if the dependence parameter equals to zero. In Equations (3)–(5), Γ(.)
and γ(., .) are gamma and incomplete gamma functions, respectively. For the characteristic
properties of FGM type bivariate gamma distribution see Kotz et al. [13].

Ranked set sampling (RSS) was introduced by McIntyre [14] as a cost-effective sam-
pling method. The estimation of the dependence parameter using RSS and its modifications
has been addressed by some authors, such as Stokes [15], Modarres & Zheng [16], Al-Saleh
& Samawi [17], Sevil & Yildiz [18].

Let us introduce the RSS procedure (k: set size and m: number of cycle) as follows,

Step I: Select k2 pairs from the population for the jth cycle.
Step II: Divide the pairs into the k sets at random.
Step III: Select rth order statistics and its concomitant from the rth set, where r = 1, 2, · · · , k.
Step IV: Steps I-III are repeated m cycle, j = 1, 2, · · · , m.

Example 1. Let k = 3 and m = 1. A sample of size k2 = 9 is selected from the population and
the rth set is denoted as Setr = {(Xr1, Yr1), (Xr2, Yr2), (Xr3, Yr3)}, where r = 1, 2, 3. In each
set, the Xs are ranked from the smallest to the largest. Additionally, Ys ranked according to the
variable X. From the rth set, the rth order statistics and its concomitant are selected. Then, RSS
with one cycle is represented by

{(
X(1)1, Y[1]1

)
,
(

X(2)1, Y[2]1

)
,
(

X(3)1, Y[3]1

)}
. If m 6= 1, then

RSS is
(

X(r)j, Y[r]j

)
where j = 1, 2, · · · , m.

Other ranked based sampling design is called generalized modified RSS (GMRSS)
which is defined by Sevil and Yildiz [18]. Only the rth order statistics X(r)j and its con-
comitants Y[r]j are selected from all sets in the GMRSS procedure. Thus, the sampling

design is called GMRSS(R = r) and is denoted by
(

Xκ(r)j, Yκ[r]j

)
where κ = 1, 2, · · · , k,

j = 1, 2, · · · , m and r ∈ [1, k].
To the authors’ best knowledge, there has been limited study on estimating the depen-

dence parameter especially when the random variables are nonlinearly related. Moreover,
the fact that FGM is a useful distribution family makes this study more meaningful. Rest of
the paper organized as follows. First, we provide some algorithms to generate sampling
data from FGM type bivariate gamma distribution in Section 2. Then, in Section 3, we
examine ML estimators based on SRS, RSS and GMRSS(R = r). Section 4 provides biases
and efficiencies of the ML estimators based on SRS, RSS and GMRSS. Finally, we give some
critical comments for the simulation results in Section 5.

2. Algorithms to Generate Samples

In this section, we focus on using the copula as a tool. Supposed that U = F(x)
and V = G(y) where both X and Y are continuous. Thus, the joint distribution of U
and V is called copula that is represented by C with domain [0, 1]2. According to Sklar’s
theorem [19], we define a bivariate copula C

H(x, y) = P[F(X) ≤ F(x), G(Y) ≤ G(y)] = Cλ(F(x), G(y)) = Cλ(u, v) (6)

where H(x, y) is joint CDF on R2 with marginal CDFs F(x) and G(y). If F(x) and G(y) are
continuous, Cλ(u, v) is unique. Let F−1(u) = {x : F(x) ≥ u} be inverse function of F(x),
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then Cλ(u, v) = H
(

F−1(u), G−1(v)
)

for (u, v) ∈ [0, 1]2. By taking partial derivatives of
Cλ(u, v) with respect to u and v, the density function of the bivariate copula cλ(u, v) can
be obtained,

cλ(u, v) =
∂2Cλ(u, v)

∂u∂v
, (7)

where λ (−1 ≤ λ ≤ 1) is the dependence parameter of the bivariate copula. Thus, the form
of density function is h(x, y) = cλ(u, v) f (x)g(y)

Now, the copula form of FGM is Cλ(u, v) = uv[1 + λ(1− u)(1− v)] where u, v ∈ [0, 1].
Thanks to the Sklar’s theorem [19], we only need generate such of a pair (u, v) on [0, 1]2

whose joint distribution function is Cλ(u, v). Algorithm for generating a pair (u, v) of
observations of uniform (0, 1) random variables (U, V) was introduced by Johnson [20]
and Nelsen [21]. This algorithm uses conditional distribution approach. Assumed that
cu(v) is conditional distribution function for V given U = u.

cu(v) = P[V ≤ v|U = u] = lim
∆u→0

C(u + ∆u, v)− C(u, v)
∆u

=
∂C(u, v)

∂u
= [1 + λ(1− 2u)]v− λ(1− 2u)v2 (8)

The following theorem demonstrates that cu(v) exists and is nondecreasing almost
everywhere v ∈ [0, 1].

Theorem 1 (Nelsen [21]). Let C be a copula. For any v ∈ [0, 1], the partial derivative ∂C(u, v)/∂u
exists and 0 ≤ ∂C(u,v)

∂u ≤ 1 for almost all u, and for such v and u. Moreover, the function
v 7→ ∂C(u, v)/∂u is defined and nondecreasing almost everywhere on v ∈ [0, 1].

Johnson [20] obtained quasi-inverse (c−1
u ) of cu by solving the equation, [1 + λ(1− 2u)]v−

λ(1− 2u)v2 = p, which quadratic in v. This equation has one root for 0 < p < 1 and it
is v = c−1

u (p) = 2p
b+a where a = 1 + λ(1− 2u) and b =

√
a2 − 4(a− 1)p. The following

algorithm is given for simulating SRS data from FGM type bivariate gamma distribution.

Algorithm 1 : Generating data from FGM type bivariate gamma distribution.

Step I: Generate u and p from i.i.d. random variates uniform (0, 1);

Step II: a = 1 + λ(1− 2u) and b =
√

a2 − 4(a− 1)p;

Step III: Set v = c−1
u (p) = 2p

b+a ;

Step IV: The desired pair is (u, v);
Step V: X = F−1(u) and Y = G−1(v);
Step VI: RETURN (X, Y).

Where F−1 and G−1 are inverse functions of F and G which are given by Equation (5).
However, there is no closed form of the inverse functions. By using “qgamma” function in
R statistical programming language, the desired pair (x, y) can be obtained. To generate
a ranked set sample from FGM type bivariate gamma distribution, the Algorithm 2 is
proposed in this paper. Using the Algorithm 2, m pairs are generated from each rank
r = 1, 2, · · · , k and RSS is balanced. If only rth ranked pairs are selected from all sets, then
GMRSS (R = r) can be constructed by using the Algorithm 2. Therefore, GMRSS is not
balanced. We will see that GMRSS provides more information than SRS and RSS, even if
the GMRSS only consists of single ordered pairs.



Comput. Sci. Math. Forum 2023, 1, 0 4 of 8

Algorithm 2: Generating RSS data from FGM type bivariate gamma distribution.

Step I: Generate a random sample (Xi, Yi), i = 1, 2, · · · , k2, using Algorithm 1 for jth cycle;
Step II: Divide the units in the sample randomly into k sets of size k each;
Step III: Rank the units in each set from the smallest to the largest by using the variable X;
Step IV: Select the order statistic X(r)j and its concomitant variable Y[r]j from rth set;

Step V: RETURN (X(r)j, Y[r]j) where r = 1, 2, · · · , k and j = 1, 2, · · · , m.

The authors will provide these R functions for the Algorithms 1 and 2 upon request.

3. Maximum Likelihood Estimates of Dependence Parameter

Let Θ = (α, β, λ)T be a parameter vector where α and β are shape parameters of the
variables X and Y, respectively. Also, λ is the dependence parameter. By examining similar
studies, it can be seen that there are three different scenarios in which the ML estimator
of the dependence parameter is investigated: (i) the parameters of the variables X and
Y are known, (ii) the parameters of the variable X (which is more easily accessible) are
known, but those of Y are not, and (iii) all parameters are unknown. Beginning with case
(i), examination of the ML estimator for the dependence parameter can be meaningful and
offer some hints for cases (ii) and (iii).

3.1. ML Estimator from Simple Random Sample

Suppose that (Xi, Yi), i = 1, · · · , n, is a sample drawn at random from h(x, y). Let
log-likelihood function is LSRS(λ) = Σn

i=1 log(h(xi, yi)). Since the analytically closed
expression of λ̂SRS is not defined, the ML estimate of λ (λ̂SRS) can be obtained by solving
the following equation.

∂LSRS(λ)

∂λ
=

n

∑
i=1

h′(xi, yi)

h(xi, yi)
=

n

∑
i=1

(1− 2ui)(1− 2vi)

1 + λ(1− 2ui)(1− 2vi)
= 0, (9)

where h′(xi, yi) is the first derivative of the h(xi, yi) with respect to λ, u = F′(x) and
v = G′(y). The variance of λ̂SRS, V

(
λ̂SRS

)
is defined as follows,

V
(
λ̂SRS

)
=

{
−E
[

∂2LSRS(λ)

∂λ2

]}−1

=

{
E

[
n

∑
i=1

(
(1− 2ui)(1− 2vi)

1 + λ(1− 2ui)(1− 2vi)

)2
]}−1

(10)

3.2. ML Estimator from Ranked Set Sample

In this section, the ML estimator based on RSS (λ̂RSS) is established. It is assumed
that

(
X(r)j, Y[r]j

)
is ranked set sample where r = 1, 2, · · · , k and j = 1, 2, · · · , m. Under the

perfect ranking condition, X(r) has the same PDF of rth order statistic,

fr:k(x) =
k!

(r− 1)!(k− r)!
f (x)F(r−1)(x)(1− F(x))k−r, (11)

where f (x) and F(x) are given by Equations (3) and (5), respectively. The joint PDF of(
X(r)j, Y[r]j

)
can be written as follows,

fr:k(x, y) = fr:k(x) f (y|x) = k!
(r− 1)!(k− r)!

F(r−1)(x)(1− F(x))k−rh(x, y) (12)
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where h(x, y) is given by Equation (2). Thus, log-likelihood function can be expressed as
LRSS(λ) = Σm

j=1Σk
r=1 log( fr:k(x(r)j, y[r]j)). Since λ appears in h(x, y),

∂LRSS(λ)

∂λ
=

m

∑
j=1

k

∑
r=1

h′(x(r)j, y[r]j)
h(x(r)j, y[r]j)

=
m

∑
j=1

k

∑
r=1

(
1− 2u(r)j

)(
1− 2v[r]j

)
1 + λ

(
1− 2u(r)j

)(
1− 2v[r]j

) = 0 (13)

where u(r)j = F−1(x(r)j) and v[r]j = G−1(y[r]j). The ML estimator based on RSS (λ̂RSS) can
be found by solving the Equation (15) with a computer algorithm. The variance of λ̂RSS is
obtained using the following equation.

V
(
λ̂RSS

)
=

{
−E
[

∂2LRSS(λ)

∂λ2

]}−1

=

E

 m

∑
j=1

k

∑
r=1


(

1− 2u(r)j

)(
1− 2v[r]j

)
1 + λ

(
1− 2u(r)j

)(
1− 2v[r]j

)
2


−1

(14)

3.3. ML Estimator from Generalized Modified Ranked Set Sample

Let
(

Xκ(r)j, Yκ[r]j

)
is denoted GMRSS(R = r) where κ = 1, 2, · · · , k, j = 1, 2, · · · , m

and r ∈ [1, k]. The n = mk pairs in this sampling scheme are selected from the rth ranked
pairs. Assumed that λ̂R=r is ML estimator based on GMRSS (R = r). Under perfect ranking
condition, X(r) has the same PDF of the rth order statistic that is given by Equation (13) for

each κ and j. Thus, the joint PDF of
(

Xκ(r)j, Yκ[r]j

)
can be defined as given Equation (16).

Log-likelihood function is LRSS(λ) = Σm
j=1Σk

κ=1 log( fr:k(xκ(r)j, yκ[r]j)). By taking the first
derivative of LGMRSS(R=r)(λ) with respect to λ, the following equation is obtained.

∂LR=r(λ)

∂λ
=

m

∑
j=1

k

∑
κ=1

h′(xκ(r)j, yκ[r]j)

h(xκ(r)j, yκ[r]j)
=

m

∑
j=1

k

∑
κ=1

(
1− 2uκ(r)j

)(
1− 2vκ[r]j

)
1 + λ

(
1− 2uκ(r)j

)(
1− 2vκ[r]j

) = 0 (15)

where uκ(r)j = F−1(xκ(r)j) and vκ[r]j = G−1(yκ[r]j). The ML estimator based on GMRSS
(R = r) is represented by λ̂R=r and can be obtained by solving Equation (17). The variance
of λ̂R=r is described as following,

V
(
λ̂R=r

)
=

{
−E
[

∂2LR=r(λ)

∂λ2

]}−1

=

E

 m

∑
j=1

k

∑
κ=1


(

1− 2uκ(r)j

)(
1− 2vκ[r]j

)
1 + λ

(
1− 2uκ(r)j

)(
1− 2vκ[r]j

)
2


−1

(16)

4. Results

In this section, we present Monte Carlo simulation results. In the simulation,
10,000 samples are generated by using Algorithms 1 and 2. The values of dependence
parameters are taken to be λ = {−0.5, 0, 0.5}, the sample sizes to be n = {30, 60, 90} and
the set sizes to be k = {3, 5}. In the Tables 1– 3, the estimated values λ̂ψ, relative efficiency
(RE) and relative information (RI) are reported, where ψ = SRS, RSS and R = r (GMRSS
(R = r)). REs of the ML estimators based on RSS and GMRSS (R = r) with respect to the
ML estimator based on SRS are obtained by using RE = MSE

(
λ̂SRS

)
/MSE

(
λ̂RSS

)
and

RER=r = MSE
(
λ̂SRS

)
/MSE

(
λ̂R=r

)
, where MSE(λ̂ψ) = (1/10,000)Σ10,000

w=1
(
λ̂ψ,w − λ

)2
for

ψ=SRS, RSS and R = r. On the other hand, the RIs are defined as RI = FI
(
λ̂RSS

)
/FI

(
λ̂SRS

)
and RIR=r = FI

(
λ̂R=r

)
/FI

(
λ̂SRS

)
, where FIs are fisher information values FI

(
λ̂ψ

)
=

−E
[
∂2Lψ(λ)/∂λ2] for each ψ = SRS, RSS and R = r. In the Monte Carlo simulation,

the first and second derivatives of the log-likelihoods with respect to λ are attained by
using a numerical optimization program which is “optim” function in R programming
language. In the R function “optim”, method is chosen as “L-BFGS-B”.
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Table 1. Estimated values (λ̂SRS, λ̂RSS), REs and RIs of λ̂RSS with respect to λ̂SRS.

λ −0.5 0 0.5

n 30 60 90 30 60 90 30 60 90

k 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5

λSRS −0.458 −0.458 −0.485 −0.485 −0.498 −0.498 0.002 0.002 −0.004 −0.004 −0.006 −0.006 0.459 0.459 0.492 0.492 0.498 0.498
λRSS −0.455 −0.449 −0.49 −0.489 −0.498 −0.497 −0.001 0.000 −0.001 0.000 0.001 0.003 0.458 0.456 0.482 0.486 0.493 0.496
RE 0.984 0.981 1.032 1.016 0.994 1.037 1.002 1.001 1.035 1.017 1.004 1.016 0.975 0.976 0.982 0.987 0.990 0.997
RI 0.998 1.007 0.993 1.007 1.002 0.999 1.014 0.999 0.999 0.995 1.003 1.002 1.007 0.991 1.000 0.992 0.999 1.000

Table 2. Estimated values (λ̂R=r), REs and RIs of λ̂R=r with respect to λ̂SRS (k = 3).

λ n λ̂R=1 λ̂R=2 λ̂R=3 RER=1 RIR=1 RER=2 RIR=2 RER=3 RIR=3

−0.5
30 −0.461 −0.417 −0.471 1.139 1.222 0.695 0.569 1.130 1.229
60 −0.496 −0.463 −0.492 1.202 1.218 0.656 0.572 1.144 1.213
90 −0.499 −0.483 −0.501 1.138 1.213 0.658 0.570 1.179 1.210

0
30 0.005 −0.001 −0.004 1.175 1.216 0.707 0.583 1.154 1.207
60 0.002 −0.006 0.001 1.147 1.202 0.630 0.597 1.230 1.194
90 −0.005 −0.004 −0.003 1.228 1.196 0.618 0.604 1.185 1.191

0.5
30 0.465 0.400 0.459 1.165 1.230 0.650 0.570 1.126 1.218
60 0.492 0.467 0.488 1.177 1.216 0.660 0.574 1.193 1.223
90 0.505 0.487 0.500 1.208 1.207 0.658 0.573 1.221 1.211

Table 3. Estimated values (λ̂R=r), REs and RIs of λ̂R=r with respect to λ̂SRS (k = 5).

λ n λ̂R=1 λ̂R=2 λ̂R=3 λ̂R=4 λ̂R=5 RER=1 RIR=1 RER=2 RIR=2 RER=3 RIR=3 RER=4 RIR=4 RER=5 RIR=5

−0.5
30 −0.489 −0.432 −0.379 −0.426 −0.475 1.456 1.667 0.792 0.689 0.543 0.399 0.753 0.686 1.460 1.665
60 −0.497 −0.481 −0.439 −0.477 −0.503 1.530 1.623 0.787 0.683 0.506 0.396 0.744 0.689 1.457 1.624
90 −0.501 −0.488 −0.457 −0.490 −0.497 1.549 1.614 0.743 0.691 0.470 0.397 0.713 0.692 1.605 1.600

0
30 −0.005 0.002 −0.002 0.002 −0.005 1.424 1.571 0.792 0.695 0.602 0.406 0.801 0.703 1.451 1.581
60 0.000 0.000 0.004 −0.004 −0.002 1.542 1.549 0.741 0.713 0.498 0.425 0.734 0.713 1.536 1.563
90 −0.001 0.006 0.000 −0.007 −0.005 1.535 1.557 0.709 0.713 0.456 0.429 0.718 0.713 1.576 1.551

0.5
30 0.480 0.430 0.371 0.423 0.483 1.485 1.655 0.792 0.687 0.545 0.399 0.775 0.697 1.455 1.675
60 0.496 0.476 0.439 0.475 0.496 1.497 1.630 0.775 0.684 0.523 0.398 0.724 0.690 1.503 1.610
90 0.497 0.486 0.455 0.489 0.502 1.520 1.605 0.761 0.686 0.481 0.399 0.741 0.689 1.504 1.597

5. Discussion

The present work provides ML estimators based on SRS, RSS and GMRSS (R = r) for
the dependence parameter of FGM type bivariate gamma distribution. According to the
Monte Carlo simulation, we obtain the following findings,

• In Table 1, it is observed that the estimated values λ̂SRS and λ̂RSS are similar. The esti-
mated values get closer to actual λ as sample size increases. Also, when considering
the REs and RIs, we can say that the ML estimator based on RSS is as efficient as
the ML estimator based on SRS. For researchers who study RSS and its extensions,
the result might be a surprise. Similar results, however, were found in Stokes [15] and
Sevil and Yildiz [18].

• Table 2 shows that the ML estimators based on GMRSS (R = 1) and GMRSS (R = 3)
has smaller biases than the ML estimator based on GMRSS (R = 2). Additionally, it
should be noted that compared to SRS, RSS, and GMRSS (R = 2), GMRSS (R = 1) and
GMRSS (R = 3) provide more efficient ML estimators. On the other hand, there is no
evidence that RER=r and RIR=r are monotone increasing or decreasing function of the
sample size n.

• When comparing SRS and RSS, Table 3 demonstrates that GMRSS (R = 1) and GMRSS
(R = 5) have the least biases (aside from λ = 0). Thus, it is revealed that the ML
estimator based on GMRSS (R = r) approaches actual λ while the set size increases.
Also, the highest REs and RIs are obtained when the sample are selected from the
minimum ranked (R = 1) pairs or maximum ranked (R = 5) pairs. According to the
Tables 2 and 3, we see that REs and RIs decrease while the rank r is increasing for
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1 ≤ r ≤ (k + 1)/2. On the other hand, it is observed that REs and RIs are increasing in
r for (k + 1)/2 ≤ r ≤ k.

• Considering that GMRSS design only needs one rank value while RSS requires all
rank values, it is obvious that a sample can be obtained by using GMRSS with less
effort than RSS. Consequently, the authors recommend using the GMRSS (R = 1) or
GMRSS (R = k) design to estimate the dependence parameter of FGM type bivariate
gamma distribution when the set size k.
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