
Article

Stochastic Boundary Value Problems via Wiener Chaos
Expansion

Geogre Kanakoudis, 1,* Konstantinos G.Lallas, 1,* Vassilios Sevroglou 1 and Athanasios N. Yannacopoulos 2

Citation: Kanakoudis, G., Lallas,

G.K., Sevroglou, V., Yannacopoulos,

N.A. Stochastic Boundary Value

Problems via Wiener Chaos

Expansion. Journal Not Specified 2023,

1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2023 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics and Insurance Science, University of Piraeus, 80 Karaoli and Dimitriou Street,
18534 Piraeus, Greece

2 Department of Statistics, Athens University of Economics and Business, Patission 76, 104 34 Athens,
Greece

* Correspondence: gkanak@unipi.gr, konlallas@unipi.gr
† Presented at the 1st International Online Conference on Mathematics and Applications; Available online:

https://iocma2023.sciforum.net/

Abstract: In this work we study stochastic boundary value problems via a Wiener chaos Expan-
sion in acoustics and linear elasticity. In particular, for both cases we provide the appropriate
variational formulation for the stochastic-source Helmholtz equation as well as for the Navier
one with stochastic boundary data. The main idea is to reduce our stochastic problems into an
infinite hierarchy of deterministic boundary value problems, for each of which an appropriate
variational formulation, is considered. Further, we present well-posedness for the above hierarchy
of deterministic problems, we give the appropriate linchpin frame with the stochastic problem and
we exploit uniqueness and existence arguments for the weighted Wiener chaos solution. Finally,
some useful remarks and conclusions are also given.

Keywords: Stochastic boundary value problems, Hermite polynomials, Helmholtz and Navier
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1. Introduction

In this paper we study stochastic boundary value problems arising in acoustics and
linear elasticity. Our methodology is based upon the use of an appropriate Wiener chaos
expansion for the Helmholtz equation with stochastic source, as well as and for the case
of the Navier equation with stochastic boundary data. Although the corresponding
deterministic problems have been widely studied, there is relatively little work for the
corresponding stochastic problems required to incorporate effects of randomness and
uncertainty, which turn the problem original partial differential equation (PDE) problem
to a stochastic partial differential equation (SPDE) citeKalpineli.

The aim of this work is to establish existence and uniqueness of solutions for
stochastic boundary value problems due to Helmholtz and Navier equation. Building on
previous work on elliptic and parabolic equations (see e.g. [1–4] and references therein),
the key idea is to use the Wiener chaos expansion and decompose the SPDE into an
infinite hierarchy of deterministic PDE problems whose properties are well studied, and
then compose the solution of the SPDE as a generalized random series, thus allowing
us to obtain well posedeness results for the SPDE. The results of the present paper are
motivated by and can be considered as a first step towards our final goal of applying this
method to acoustic and elastic scattering problems for obstacles with various boundary
conditions.

Our paper is organized as follows. In Section 2, and for the convenience of the reader,
we give preliminaries mathematical notations as well as the appropriate functional space
setting. In Section 3, we deal with the stochastic boundary value problem for the
Helmholtz equation, for which an analogous approach due to [4,5] is applied.
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In Section 4, we study and give results for a stochastic elastic boundary value
problem, where the boundary condition is a random variable [2,6]. Finally, in Section 5,
we give some useful remarks and conclusions.

2. Mathematical Preliminaries

In this section we present mathematical notations and suitable functional space
setting. Initially, we consider the Wiener Chaos Expansion of elements of the space of
square-integrable functions defined on the space of tempered distributions [5].
Let S

(
Rd
)

be the Schwartz space of rapidly decreasing C∞ functions on Rd, where its

dual space S∗
(
Rd
)

be the space of tempered distributions. We also mention that there
exists a unique probability measure P on F, where F is the family of Borel subsets of
S∗
(
Rd
)

, such that

E
[
ei(·, φ)

]
:=
∫
S∗

ei〈ω, φ〉dP(ω) = exp
(
−1

2
‖φ‖2

L2(Rd)

)
∀φ ∈ S, (1)

where 〈ω, φ〉 = ω(φ) is the process of ω ∈ S∗ on φ ∈ S (Bochner-Minlos Theorem), [5].

The Hermite polynomials are defined as hn(x) = (−1)ne
x2
2 dn

dxn

(
e−

x2
2

)
, n = 0, 1, 2, .. and

thus Hermite functions ξn(x) are also defined as:

ξn(x) = π−
1
4 ((n− 1)!)−

1
2 e−

x2
2 hn−1(x), n = 1, 2, 3, ...

We can easily see that the Hermite functions ξn(x) n = 1, 2, 3, ... constitute an orthonor-

mal basis in L2
(
Rd
)

with respect to the weight e−
x2
2 .

Let now δj =
(

δ
j
1, δ

j
2, ..., δ

j
d

)
where δ

j
i ∈ N and assume the following tensor products

ξδj := ξ
δ

j
1
⊗ ξ

δ
j
2
⊗ ...⊗ ξ

δ
j
d
, j = 1, 2, 3, ...

where for i < j inequality δi
1 + δi

2 + ... + δi
d ≤ δ

j
1 + δ

j
2 + ... + δ

j
d holds. The family of

tensor products
{

ξδj
}∞

j=1 constitutes an orthogonal basis in L2
(
Rd
)

. We also introduce
the countable multiindex via I = {a = (a1, a2, ...)|ai ∈ N∪ {0}} for which there exists a
finite number of ai 6= 0. For each a ∈ I we define stochastic Hermite polynomials Ha
given by

Ha(ω) =
∞

∏
i=1

hai (〈ω, ξδi 〉), ω ∈ Ω.

We can see that Ha forms an orthogonal basis in L2(Ω) and the norm ‖Ha‖ satisfies

‖Ha‖2
L2(Ω) = a! = a1!a2!...

Theorem 1. Every f ∈ L2(Ω) has a unique Wiener- Ito chaos expansion in terms of stochastic
Hermite polynomials, given by

f (ω) = ∑
a∈I

ca Ha(ω), ca ∈ R (2)

where
ca = E( f (ω)Ha(ω)) =

∫
Ω

f (ω)Ha(ω)dP(ω).
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In what follows we define the stochastic Hilbert space (S)ρ,z,L2(Ω), for ρ ∈ [−1, 1], z ∈
R, as the set of all sums

f = ∑
a∈J

fa Ha, fa ∈ L2(Ω), ∀a ∈ I (3)

with finite norm

‖ f ‖ρ,z,L2(Ω) =

(
∑
a∈I
‖ fa‖2

L2(Ω)(a!)1+ρ(2N)za

)1/2

. (4)

The norm given by (4) is induced by the inner product

( f , g)ρ,z,L2(Ω) = ∑
a∈I

( fa, ga)L2(Ω)(a!)1+ρ(2N)za, f , g ∈ (S)ρ,z,L2(Ω)

where
f = ∑

a∈I
fa Ha, g = ∑

a∈I
ga Ha (5)

and

(2N)za :=
∞

∏
j=1

(2j)zaj .

Finally, we also define the usual Sobolev space H1
0(D) given by,

H1
0(D) :=

{
υ ∈ H1(D) and υ = 0 on ∂D

}
.

3. The Stochastic Helmholtz Boundary Value Problem

In this section we present the construction of an infinite hierarchy of deterministic
equations for the stochastic Helmholtz equation. Furthermore, we study the well-
posedness of our stochastic problem through the existence and uniqueness for each
solution of the hierarchy of deterministic problems.

We consider the following stochastic boundary value problem

∆u + k2u = f in D (6)

u = g, on ∂D (7)

where f is a generalized stochastic source, g a stochastic boundary condition and I =
{a = (a1, a2, ...)|ai ∈ N∪ {0}} as given above (see page 2). For the stochastic problem
(6)-(7) we use relations given in (5) as well as u = ∑

a
uaHa, in order to get the infinite

hierarchy of deterministic problems

∆ua + k2ua = fa in D and ua = ga on ∂D (8)

For the above deterministic problems we can get their corresponding variational for-
mulations, and for the sake of brevity, we only give the variational formulation of the
problem for |a| = n.

∆un + k2un = fn in D (9)

un = gn on ∂D (10)

given by
α(un, v) = `(v) ∀v ∈ H1(D). (11)



Version April 27, 2023 submitted to Journal Not Specified 4 of 7

In (11) the bilinear form α(un, v) on H1(D)× H1(D) is given by

α(un, v) =
∫
D

(
−∇un · ∇v + k2unv

)
dx (12)

and the linear functional `(v) on H1(D) by

`(v) =
∫
D

fnvdx−
∫

∂D

gnvdx, (13)

where the function fn ∈ L2(D) and gn ∈ L2(∂D). In what follows we give the following
proposition.

Proposition 1. Let D be a bounded open subset of Rd , fn ∈ L2(D) , gn ∈ L2(∂D) and
k2 ∈ L∞(D), then the problem (11) has a unique solution un ∈ H1(D), which satisfies the
following inequality

‖un‖H1(D) ≤ cn(‖ fn‖L2(D) + ‖gn‖H1/2(∂D)) (14)

The proof of the proposition uses the hypothesis of the Lax-Milgram theorem [7],
and its omitted here for brevity. We now give the following main result.

Proposition 2. If we define the weights wa = (a!)1+ρ(2N)za, |a| = 0, 1, ..., n, then the stochas-
tic problem (6)-(7) admits a unique weighted Wiener chaos solution u ∈ (S)ρ,z,L2(D).

Proof. From Proposition 1, each one of the deterministic problems (8) has a unique
solution ua ∈ H1(D) and via relation u = ∑

a
ua Ha our stochastic problem (6)-(7) admits

a unique solution. In relation (14), cn depends on fn, gn and hence there is a positive
constant c being the supremum of cn, n = 0, 1, 2, ... which satisfies inequality (14).
Furthermore, if we raise each one of the inequalities (14) for n = 0, 1, 2, ... to the square
power, multiply both sides by the weights wa, and add them we can get

∑
a∈I

wa‖ua‖2
H1(D) ≤ c2 ∑

a∈I
wa

(
‖ fa‖2

H1(D) + ‖ga‖2
H1/2(∂D)

)
(15)

for a positive constant c = Sup(cn), n = 0, 1, 2, ... Using the fact that

‖u‖2
(S)ρ,z,L2(D) = ∑

a∈I
wa‖ua‖2

L2(D) (16)

and taking into account that ‖uα‖L2(D) ≤ ‖uα‖H1(D) via (15) we can easily get

‖u‖2
(S)ρ,z,L2(D) ≤ c2 ∑

a∈I
wa

(
‖ fa‖2

H1(D) + ‖ga‖2
H1/2(∂D)

)
< ∞. (17)

We also remark that an analogous estimation for the solution as in (17) is also valid in

the space (S)ρ,z,H1(D).

4. Stochastic Boundary Data for Navier Equation

In this section we study the stochastic boundary value problem for Navier equation.
Initially, similar to the acoustic case we construct an infinite hierarchy of deterministic
problems and establish the well-posedness of our stochastic problem via the uniqueness
and existence of each deterministic one. Let D ⊂ R2

be an open bounded domain with
boundary ∂D ≡ Γ being Lipschitz. Throughout this paper n̂ = n̂(r) denotes the outward
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unit normal vector at the point r ∈ Γ. The problem is formulated as follows:

Find a vector function u ∈ (S)ρ,z,[L2(D)]2 such that

∆∗u(r) + $ ω2u(r) = 0, r ∈ D, (18)

u(r) = g := ∑
α

gαHα, r ∈ Γ, (19)

where the explicit expression for ∆∗, is given by

∆∗u(r) := µ ∆u(r) + ( λ + µ )∇∇ · u(r) (20)

with ω ∈ R in (18) denotes now the so called angular frequency, λ, µ are the Lamé

constants and $ is the mass density. Since any element of the space (S)ρ,z,[L2(D)]2 admits a
Wiener chaos expansion [3,5], substituting the projections uα of u on Hα into the relation
u(r) = ∑α uαHα we can construct the solution u. We transform our stochastic problem
into an infinite hierarchy of deterministic problems and we exploit uniqueness and
existence results for each one [4]. Via the projections uα, α ∈ I we get the following
hierarchy of problems:

∆∗uα(r) + $ ω2uα(r) = 0, r ∈ D, (21)

uα(r) = gα, r ∈ Γ, (22)

For the above deterministic problems we can get their corresponding variational for-
mulations, and for the sake of brevity, we only give the variational formulation of the
problem for |a| = n (21)-(22):
Find a solution un ∈

[
H1(D)

]2 such that

α(un, v) = `(v), for every v ∈ [H1(D)]2 (23)

where the bilinear form α(un, v) on [H1(D)]2 × [H1(D)]2 is given by

α(un, v) = −µ
∫

D
(∇un) : (∇v̄) dr− (λ + µ)

∫
D
(∇ · un)(∇ · v̄) dr

+
∫

D
ρω2un · v̄ dr (24)

and the linear functional `(v) on [H1(D)]2 by

`(v) = −µ
∫

Γ
n̂ · (∇gn) · v̄ ds− (λ + µ)

∫
Γ
(∇ · gn)n̂ · v̄ ds (25)

Proposition 3. Let D be an open subset of R2 and gn ∈ [L2(D)]2, then problem (21)-(22) is
uniquely solvable and furthermore the solution un ∈ [H1(D)]2 satisfies

‖un‖H1(D) ≤ c ‖gn‖H1/2(Γ) for some positive constant c. (26)

In order now to establish now existence and uniqueness of (23) we need the follow-
ing three lemmas for which their proofs are omitted here for brevity.

Lemma 1. The bilinear form α(un, v) is bounded i.e.

|α(un, v)| ≤ c3‖un‖H1(D)‖v‖H1(D). (27)
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Lemma 2. The following coercivity property for α(un, un) holds

Re{α(un, un)} ≥ c ‖un‖2
H1(D). (28)

Lemma 3. The linear functional `(v) is bounded, i.e., there exists a positive constant c1 such
that

|`(v)| ≤ c1 ‖v‖H1(D). (29)

The above procedure uses the hypothesis of the Lax-Milgram theorem [7] in order
to derive the assertion of Proposition 3.

Proposition 4. The stochastic problem (18)-(19) admits a unique Wiener chaos solution u ∈
(S)ρ,z,[L2(D)]2 that satisfies

‖u‖2
(S)ρ,z,[L2(D)]2 ≤ c2 ∑

α

wα ‖gα‖2
H1/2(Γ) where wα = (a!)1+ρ(2N)za, |α| = 0, 1, 2, ... (30)

Proof. We state here that each of the deterministic problems (21)-(22) admits a unique
solution and we also mention that cn depends on gn and hence there is a positive
constant c being the supremum of cn, i.e. c = sup{cn, n = 0, 1, 2, ...}. Thus the following
inequalities hold:

‖u0‖H1(D) ≤ c ‖g0‖H1/2(Γ)

‖u1‖H1(D) ≤ c ‖g1‖H1/2(Γ)

... (31)

‖un‖H1(D) ≤ c ‖gn‖H1/2(Γ)

...

Raising these inequalities to the second power, multipling both sides of each inequality
by wα, adding them, and taking into account ‖uα‖[L2(D)]2 ≤ ‖uα‖[H1(D)]2 we get

∑
α

wα‖ua‖2
L2(D) ≤ c2 ∑

α

wα ‖gα‖2
H1/2(Γ). (32)

Hence we easily arrive at

‖u‖2
(S)ρ,z,[L2(D)]2 ≤ c2 ∑

α

wα ‖gα‖2
H1/2(Γ) < ∞. (33)

An analogous estimation for the solution, as in (33) is also valid in the space (S)ρ,z,[H1(D)]2 .

5. Conclusions

In this paper well posedness of solutions for stochastic boundary value problems
due to Helmholtz as well as Navier equation were established, via the study of their cor-
responding hierarchies of deterministic problems. Uniqueness, existence and regularity
issues were addressed and we also make the following remarks:

(i) For the stochastic Helmholtz equation, with stochastic source and stochastic
boundary condition, we proved that stochastic problem (6)-(7) admits a unique
weighted Wiener chaos solution.

(ii) In the case of stochastic boundary data for Navier equation, a unique Wiener
chaos solution for stochastic problem (18)-(19) was proved.

(iii) The proposed method can also be extended to cover the case of stochastic
boundary value problem where the randomness is present in the equation (e.g.
in k for the Helmholtz equation, or $, λ, µ for the Navier equation) as well as in
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the boundary condition. The study of such cases in under progress and will be
communicated separately.

Author Contributions: All authors have read and agreed to the published version of the manuscript.
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