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Abstract: We offer a new asymptotic expansion with explicit remainder estimate in the central
limit theorem. The results obtained are essentially based on the ideas of the paper [1]. We also
present a more accurate estimation of the CLT-expansions remainder which is rigorously proved and
backed up numerically. It is shown that our approach can be used for further refinement of allied
asymptotic expansions.
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1. Introduction

The central limit theorem (CLT) states that under fairly broad conditions the sum of
independent (or weakly dependent) identically distributed (i.i.d.) random variables is
approximately normally distributed. In the paper we deal with CLT for i.i.d. variables
X1, X2, ... with zero mean and unit variance each. Let X1 follow a distribution P with
cumulative distribution function F(x) and chatacteristic function f (t).

We assume that X1 has a finite absolute moment of order m + 2 and for some ν > 0
the function | f (t)|ν is integrable on R. Since for any T > 0 the integral

+∞∫
T

| f (t)|νdt < +∞

converges and
α(T) = sup{| f (t)| : t > T} < 1

(see [2], p. 43), it follows that for n > ν the distribution Pn of the rescaled sum
(X1 + ... + Xn)n−

1
2 has a continuous density pn(x). In its turn, this implies that for this dis-

tribution Pn (with cumulative distribution function Fn(x)) the CLT holds [2]: pn(x)→ ϕ(x)
as n → +∞ for any x ∈ R; here ϕ(x) = 1√

2π
e−x2/2 is the density of the standard normal

distribution Φ(x). The density pn(x) can be represented as the inverse Fourier trans-
form [2] (pp. 42, 147) of the characteristic function f n of the convolution of n copies of the
original distribution.

Here the question naturally arises concerning the accuracy of the CLT-approximation.
One of the main results on the subject is the Berry-Esseen theorem (see, for example, [3]).
Nevertheless, this theorem is too general (and not attempting to take any specific properties
of the original distribution into play) and therefore provides rather crude estimates of the
convergence rate [4].
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One way to improve the accuracy of CLT-approximations is to use asymptotic expan-
sions. Until quite recently, most of such expansions only gave an estimate of the order of
approximation at best and thus were of little use for, say, numeric computations.

Yu.V. Prohorov wrote [5] (p. 7) that “it was P.L. Chebyshev’s idea to explore the asymp-
totic behavior of the difference Fn(x)−Φ(x) and it was him to give a formal expansion of
the difference”. A number of such expansions under different restrictions on the original
distribution were obtained later by H. Cramer [6] and investigated by C.-G. Esseen [7].
Moreover, H. Cramer [8] claimed that the featured series expansions were introduced by
F. Edgeworth [9]. For example, if there exists an integer m > 1 such that M|X1|m+2 < ∞
and the so-called Cramer’s (C) condition lim

|t|→∞
sup| f (t)| < 1 is fulfilled, then

Fn(x) = Φ(x) +
m

∑
k=1

Pk(−Φ)

nk/2 + O
(

1
nm/2

)
, n→ ∞.

Here Pk(−Φ) = L3k−1(x)ϕ(x) and L3k−1(x) is a polynomial of degree 3k− 1 in x. Explicit
formulas for Pk(−Φ) in terms of semi-invariants were obtained by V.V. Petrov [10] in 1962.

Seeking more efficient forms of such expansions V.V. Senatov took what can be justly
characterized a revolutionary step: he offered expansions that allowed for explicit esti-
mation of the remainder (not just barely indicating big-Oh approximation order). At the
moment only one type of CLT-asymptotic expansions, namely the Gram-Charlier expansion,
was widely known, that is,

pn(x) = ϕ(x) +
3m−3

∑
k=3, k 6=3m−4

θk(Pn)Hk(x)ϕ(x) + O
(

1
nm/2

)
, n→ ∞.

Here Hk(x) = (−1)k ϕ(k)(x)
ϕ(x) are Chebyshev-Hermite polynomials and

θk(Pn) =
1
k!

+∞∫
−∞

Hk(x)pn(x)dx , k > 0

are normalized moments.
As mentioned by V.V. Senatov [2] (p. 124), already in 1920th H. Cramer [8] noticed

that this accuracy can be attained with only m + 2 moments at hand (the Gram-Charlier
expansion provides the same accuracy only when 3m− 3 moments are used). That was the
reason, in Senatov’s opinion, why researchers’ primary focus was on the Edgeworth-Cramer
(not Gram-Charlier) expansion.

At the same, it turns out that there exists an expansion of the Gram-Charlier type that
makes use of only m + 2 absolute moment of variable X1.

Senatov proceeded by introducing along with the moments θk the so-called incomplete
moments θ

(l)
k :

θk =
[ k

2 ]

∑
j=0

(−1)jαk−2jα2j(ϕ) , θ
(l)
k =

[ l
2 ]

∑
j=0

(−1)jαk−2jα2j(ϕ) , l 6 k ,

where

αj =
MX j

1
j!

, β j =
M|X1|j

j!
, α2l(ϕ) =

1
2l l!

.

Finally, Senatov came up with what he dubbed a shortened Gram-Charlier expansion:

pn(x) = ϕ(x) +
m+1

∑
k=3

θk(Pn)Hk(x)ϕ(x) +
3m−3

∑
k=m+2, k 6=3m−4

θ
(m+1)
k (Pn)Hk(x)ϕ(x) + R .
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He used alternating measures in his derivation, which imposes additional limitations on the
moments of the original distribution.

In attempts to remove the limitations and make the estimation of the remainder more
accurate, V.V. Senatov and V.N. Sobolev [1] suggested a novel form of asymptotic expansion
that does not impose any additional restrictions on the momenta (as compared to [2]).

The Gram-Charlier expansion differs architecturally from the Edgeworth-Cramer
expansion: the former is in powers of the Chebyshev-Hermite polynomials while the latter
is in powers of n. Expansions of the third type [1,11] are obtained as follows: the terms
in such an expansion are to be ordered with respect to the number of factors, which are
Senatov’s moments

Before works [1,11], only two types of such expansions were widely known: the
Gram–Charlier and Edgeworth–Cramer expansions. In the former the terms are grouped
in the order of the Chebyshev–Hermite polynomials, and in the latter, they are grouped in
powers of n. In [7], Senatov and Sobolev proposed grouping the terms according to the
number of factors of Senatov’s moments

pn(x) = ϕ(x) +
m−1

∑
s=1

Cs
n

m−1+2s

∑
l=3s

Θs,l

nl/2 Hl x)ϕ(x) + O
(

1
nm/2

)
, n→ ∞ ,

where
Θs,l = ∑

t1+...+ts=l
θt1 ...θts

the summation is carried out over tuples of natural numbers t1, . . . , ts such that tj > 3 ,
j = 1, . . . , m− 1 and t1 + . . . + ts = l.

2. Main Result

To improve the accuracy of the expansions from [1] note first that the values

α0 = 1, α1 = 0 , α2 =
1
2

, α2l(ϕ) =
1

2l l!

are known. Then we introduce the following non-negative quantities:

‖θs‖ = βs+2 +
[ s

2 ]−2

∑
j=1

α2j(ϕ)
∣∣αs−2j

∣∣+
∣∣∣∣∣∣

[ s
2 ]

∑
j=[ s

2 ]−1

(−1)jα2j(ϕ)αs−2j

∣∣∣∣∣∣ .

It can be seen that

‖θs‖ 6 βs+2 +
[ s

2 ]

∑
j=1

α2j(ϕ)
∣∣αs−2j

∣∣ .

Therefore, the use of ‖θs‖ instead of the right-hand side of the last inequality boosts the
accuracy of the estimate.

Let
∥∥∥θ

(l)
s

∥∥∥ be the abbreviated versions of ‖θs‖: they are calculated by the same formulas
in which αk = 0 for k > l. There is also an improvement here.

Another improvement consists in preserving the minus signs between the summands
when evaluating the estimates. The following quantities naturally arise

S0,2(Θ) = ‖θm+2‖ , S0,3(Θ) =
∥∥∥θ

(m+1)
m+3

∥∥∥
which for l > 1 read

Sl,2(Θ) =
m

∑
k1,k2,...,kl

∣∣θ3+k1 θ3+k2 ...θ3+kl

∣∣∥∥∥θm+2−(l+k1+k2+...+kl)

∥∥∥ ,
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Sl,3(Θ) =
m

∑
k1,k2,...,kl

∣∣θ3+k1 θ3+k2 ...θ3+kl

∣∣∥∥∥θ
(m+2−l−k1−k2−...−kl)
m+3−l−k1−k2−...−kl

∥∥∥ .

For l > 2 the notation
m

∑
k1,k2,...,kl

implies summation over all sets k1, k2, ..., kl of non-negative

numbers such that 0 6 k1 + k2 + ... + kl 6 m− l − 1.
We will also use the following quantities of the moment type

Ll(u) =
1

2π

∫
|t|>u

|t|le−
t2
2 dt , Bl,n−k =

1
2π

+T
√

n∫
−T
√

n

|t|lµn−k
(

t√
n

)
dt ,

where the function µ(t) = max
{
| f (t)|, e−t2/2

}
was introduced by V.Yu. Korolev.

Below we formulate our main theorem that provides a CLT-asymptotic expansion
with an improved estimation of the remainder under fairly general conditions.

Theorem 1. Let identically distributed independent random variables X1, X2, ... with zero mean
and unit variance each follow the same distribution P. Suppose that P has a finite absolute moment

of order m + 2 and
∫ ∞

−∞
| f (t)|νdt < ∞. where f (t) is the characteristic function of P. Then for

any n > max(ν, m + 1) and for all x ∈ R

pn(x) = ϕ(x)
m−1

∑
l=0

Cl
n(√

n
)3l

m

∑
k1,k2,...,kl

θ3+k1 θ3+k2 ...θ3+kl(√
n
)k1+k2+...+kl

H3l+k1+...+kl
(x) + Rn,m(x) ,

where

|Rn,m(x)| 6 1(√
n
)m+2

m−2

∑
l=0

Cl+1
n
nl

(
Bm+2+2l,n−1Sl,2(Θ) + Bm+3+2l,n−1Sl,3(Θ)

1√
n

)
+

+Λn(T) + Λ̄n(T) .

Here the two last terms in the remainder’s estimate are

Λn(T) =
√

n
π

αn−ν(T)
+∞∫
T

| f (t)|νdt ,

Λ̄n(T) =
m−1

∑
l=0

Cl
n

m

∑
k1,k2,...,kl

∣∣θ3+k1 θ3+k2 ...θ3+kl

∣∣(√
n
)3l+k1+k2+...+kl

L3l+k1+k2+...+kl

(
T
√

n
)

,

decay exponentially fast.

3. Conclusions

We obtain new explicit estimates for accuracy of approximation in the CLT-expansions.
Our approach can be used for further refinement of allied asymptotic expansions.
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