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Abstract: The chaotic dynamics of the transient state in molecular and physicochemical transitions 

in quantum–classical mechanics (Egorov, V.V. Heliyon Physics 2019, 5, e02579; Egorov, V.V. 

Mathematics 2022, 10, 1443) is considered in relation to the problem of redistribution of the vibra-

tional-rotational energy of polyatomic molecules M and M1 in their pairwise collisions based on 

the microcanonical distribution. The statistical (canonical) distribution of the probability of energy 

change due to collisions in the case of a small impurity M in an equilibrium medium of M1 is ob-

tained, as well as all the moments n of this distribution, which, under the conditions of applicabil-

ity of the semiclassical approximation for the density of vibrational-rotational states, are some 

polynomials of the n-th order . The theory is compared with experimental data on monomolecular 

reactions at low pressures for NO2Cl, C2H5NC, and C5H10 molecules in various gas-phase media. 
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1. Introduction 

As is known, the theory of quantum transitions in quantum mechanics is based on 

the convergence of a series of time-dependent perturbation theory. This series converges 

in atomic and nuclear physics. In molecular physics, the series of time-dependent per-

turbation theory converges only if the Born-Oppenheimer adiabatic approximation and 

the Franck-Condon principle are strictly observed. Obviously, in real molecular systems 

there are always at least small deviations from the adiabatic approximation. Within the 

framework of quantum mechanics, these deviations lead to singular dynamics of mo-

lecular quantum transitions. The only way to eliminate this singularity is to introduce 

chaos into the electron-nuclear dynamics of the transient state. As a result of the intro-

duction of chaos, we no longer have quantum mechanics, but quantum–classical me-

chanics, in which the initial and final states are quantum in the adiabatic approximation, 

and the transient chaotic electron-nuclear(-vibrational) state is classical due to chaos, 

and the transitions themselves are no longer quantum, but quantum–classical [1,2]. This 

procedure for introducing chaos into the transient state was done in the simplest case of 

quantum–classical mechanics, namely, in the case of quantum–classical mechanics of 

elementary electron transfers in condensed media. Chaos is introduced by replacing the 

infinitely small imaginary additive in the energy denominator of the total Green's func-

tion of the “electron + nuclear environment” system with a finite value [1,2]. This chaos 

is called dozy chaos, and quantum–classical mechanics is also called dozy-chaos me-

chanics. The analytical results obtained in this new fundamental physical theory make it 

possible to explain a large number of experimental data, for example, on the shape of 
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the optical bands of polymethine dyes and their aggregates [2]. Relative simplicity of the 

case of quantum–classical mechanics of elementary electron transfers in condensed me-

dia and the possibility of obtaining the corresponding analytical result are connected, in 

particular, with the possibility of neglecting local oscillations of nuclei and taking into 

account only non-local oscillations in the theory. There is another “simple” problem in 

the quantum–classical mechanics [1,2] of complex physical systems, where a similar 

success in the application of analytical methods can be achieved. This problem is the 

problem of molecular collisions in gases, which has applications to monomolecular reac-

tions at low pressures. If in the problem of elementary electron transfers in condensed 

media the electronic state changes significantly, then during such molecular collisions in 

gases, the electronic states of the molecules do not change, and it is only necessary to 

take into account the redistribution of vibrational energy between local vibrations in col-

liding polyatomic molecules. In this case, the transient chaotic state of the motion of nu-

clei that occurs during molecular collisions can be described by statistical methods based 

on the use of the microcanonical distribution for molecular collisions [3]. Whereas in the 

problem of elementary electron transfers in condensed media the singular dynamics of 

the transient state is damped by dozy chaos, in this statistical approach to molecular col-

lisions in gases, the dynamics of energy redistribution between local vibrations in col-

liding polyatomic molecules is taken into account by separating all modes into active 

and passive. Active modes include low-frequency vibrational modes and rotational 

modes that rapidly exchange energy at the moment of collision. Passive modes include 

high-frequency vibrational modes, which are effectively included in the process of en-

ergy redistribution after the elementary act of molecular collision has already been com-

pleted. Analytical results are obtained for the distribution function of the probability of 

energy transfer in collisions of molecules, as well as for all moments of the n-th order of 

the distribution function, which have the form of certain polynomials of the n-th order.  

2. Main Text 

Consider collisions of polyatomic molecules M and M1: 

       
 vxvx  M M M M 1 . 

Here x  and v  are the vibrational-rotational energies before the collision; the stroke 

marks the states after the collision. 

It is known that the process of collision of molecules is characterized by the func-

tion  iiw   ,  or the effective cross section of collisions d , which is related to this 

function as follows [3] 

  
  VVdwd

i
iii


 - / , . 

Here i  is the phase volume (some part of the phase volume, see below) of the vibra-

tional-rotational motion of either the M molecule or the M1 molecule, or the phase vol-

ume of their relative motion. The function w  depends on all the enumerated i-th phase 

volumes (parts of the phase volumes); 
 VV


 -  is the modulus of relative velocity. 

The distribution function for collisions  iiw   ,  must obey two fundamental re-

lations, 

   TT  ,   , iiii ww   (1)

and 
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    1   ,   ,    
i

iii
i

iii dwdw  (2)

[3], which follow from the symmetry of the laws of mechanics with respect to the time 

sign reversal operation T and from the possibility of writing the probability normaliza-

tion condition for collisions in two equivalent forms. 

Bearing in mind the relatively large number of degrees of freedom of the system M 

+ M1 and its quasi-closure at the moment of collision, we can assume that the function 

  
  VVwdd ii

i
i


 - / ,/  

is the following microcanonical distribution for collisions: 

          ; , , , , ttppaappaa vvvxx    

          ; , , , , ttppaappaa vvvxx    

 tpapatpapa vvvxxvvvxx                   const     

   pppp vvxx          . (3)

Here the index t denotes the energy of the relative motion of M and M1. The first 

 -function in Equation (3) expresses the law of conservation of energy in collisions. The 

other two  -functions imply the presence of two additional integrals of motion in colli-

sions corresponding to the molecules M and M1. They express the fact that only parts of 

the phase volumes  x  and   v  of the molecules M and M1 change during the 

collision. Such parts of the phase volumes and the corresponding degrees of freedom 

and energy will be called active. They are marked with index a. Accordingly, the re-

maining parts of the phase volumes, degrees of freedom and energies will be called pas-

sive (index p). Thus, the last two  -functions in Equation (3) represent the conservation 

of the passive energies of the molecules M and M1 during collisions. 

It is easy to see that the microcanonical distribution (3) satisfies the fundamental 

relations (1) and (2). 

The constant in Equation (3) is found from the normalization condition (2). As a re-

sult, for the function w we have the following expression: 

 tpapatpapa vvvxxvvvxxVVw                     -     


 

           



















 

a

a

vx

xx

aaa
a

p
p

p
p

pppp xdxvxxxxvxvvxx        , (4)

where 

pa xxx  , 

taa vvv   , 

and 



Proceedings 2021, 68, x FOR PEER REVIEW 4 of 6 
 

 

       dzzzyy a
a ,   xvxy a

 . 

Here    dd  is the density of states. 

Further operations with the microcanonical distribution (4) are determined by the 

subsequent formulation of the problem. 

Let us assume that molecules M constitute a small impurity in the equilibrium me-

dium of molecules M1. Then the collisions of M with each other are relatively rare, and 

we can assume that the molecules M collide only with the molecules M1. Let us find un-

der these conditions the probability of transition  xxP ,  in the collision of the mole-

cule M from one state with energy x  to a unit energy interval at the point x . By inte-

grating over all variables corresponding to the final states of the molecules M and M1, 

except for the variable x , and averaging over the initial states of M and M1 and their 

relative motion, we obtain 

            


 


 

v

aa
p

aaa dvvvvxxDvvdvxxxP ;,exp, , (5)

       



x

aa
p

aaa
a

a dxxxvxxxDxvxxD ,;,;, , (6)

         xvxxxxxvxxxxvxxxD aaaaa
a

aa
 ,;,  

   




 










 

a

a

vx

xx

aaa
a xdxvxxxx , (7)

      


 

 
v

aa
p

aa dvvvvvdvexp . (8)

Here the energy is measured in units of TkB . In Equation (7), the quantity   is a 

 -function. It is natural to call the distribution  xxP ,  the canonical distribution for 

collisions of polyatomic molecules. It satisfies the normalization condition 

  




xdxxP ,  

and the detailed balance principle 

           xxxxPxxxxP  exp,exp, . 

The moments of the energy transferred during collisions 

     




 xdxxPxxx
nn

, ;   ... 3, , , n  

under the conditions of applicability of the semiclassical approximation for the density 

of states    are the following polynomials with respect to the energy x : 
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        
  

 x
NNN

NNNN
xCx n

n

m

mmnn

aa

aaaa
mm

n

mn
 CMP

,,

,,





  





 



 


, (9)

where N  is the sum of the number of vibrational and half the number of rotational 

degrees of freedom, and 
m
nC  is the number of combinations of n by m. It is natural to 

call these moments (polynomials) the canonical moments (polynomials)  xn CMP  for 

collisions of polyatomic molecules. For example, according to Equation (9)  xn  CMP   

and  xn  CMP   have the following expressions: 

   




















N

x

NN

NN
xx

aa

aa

n  CMP , (10)

       
    

 
   
































aa

aa

aaaa

aaaa

n
NNN

xNN

NN

x

NNNN

NNNN
xx  CMP . (11)

Determining the numbers of active degrees of freedom 
aN  and 

aN  in the M + 

M1 system is the task of applying the theory to specific conditions for the occurrence of 

chemical reactions during collisional, laser, chemical, etc. activation. It follows from 

physical considerations that active degrees of freedom can be formed from rotational 

(taking into account internal rotations) and low-frequency vibrational degrees of free-

dom, as well as from those degrees of freedom of the M + M1 system for which there are 

low-order resonances for the transfer of vibrational-rotational energy. Estimates of 
aN  

values using experimental x  data for NO2Cl, C2H5NC and C5H10 molecules in vari-

ous gas phase media are given in Table 1. 

 

Table 1 

Molecule M Molecule M1 x  aN  

Ar 0.6 0.2 

Xe 1.2 0.4 NO2Cl (T = 476.5 OK; x = 32; see [4]) 

N2 1.1 0.4 

CO2 1.6 0.5 

SiF4 2.5 0.9 

 

NO2Cl (T = 476.5 OK; x = 32; see [4]) 

 CCl2F2 5.5 2.0 

He 0.6 1.4 
C2H5NC (T = 504 OK; x = 39; see [4]) 

Ne 0.7 1.8 

C2H5NC (T = 504 OK; x = 39; see [4]) Ar 1.2 9.0 

CO 6.8 3.3 
C5H10 (T = 298 OK; x = 192.5; see [5,6]) 

C4H8 19.3 6.1 

The value of x , according to Equation (10), weakly depends on 
aN , therefore, 

when calculating 
aN , it was assumed that   NN a

. The found values of 
aN  are 

much less than the total number of degrees of freedom N , and they are the lower limit 

of the possible numbers 
aN  in the molecular systems under consideration, for exam-

ple, due to the possible variation of the number   NN a
. The inequality aN  

(NO2Cl in Ar, Xe, N2 and CO2) indicates that energy transfer is hindered due to adiabatic 
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collisions. The number 
aN  in this case can be considered as some characteristic of the 

degree of statistical nature of the activation mechanism. 
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