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Abstract: This paper deals with fractional order three-phase-lag (TPL) thermo-elasticity in a micropolar
thermoelastic half space medium with voids. The subsequent non-dimensional coupled equations are
solved by using the normal mode analysis and eigenvalue approach methods. By doing numerical
computations of the physical fields for a substance that resembles a magnesium crystal in the presence
of an electromagnetic field, the issue is proven to exist. The effect of the fractional order, the phase
lags on the components of temperature, displacement, the stress, and changes in volume fraction
field have been depicted graphically. Additionally, a graphic comparison of several types of models
employing phase delays and the influence of the magnetic field is displayed.

Keywords: Fractional thermo-elasticity; Three-phase-lag thermo-elasticity; Eigen value approach;
Normal mode analysis; Electro-magnetic field.

1. Introduction

Lord and Shulman(1967)[1] derived a new model to overcome the infinite speed of
heat transportation which was established by Biot(1956)[2]. The heat equation of this
theory is of the wave type,it automatically ensures finite speeds of propagation for heat and
elastic waves.Linear model of thermoelasticity is incapable to characterize the behaviour of
many new synthetic solids of the elastomer and polymer type.Eringen first time used the
micropolar elasticity term to describe such materials.

Fractional calculus was first used by Abel in the solution of an integral equation that
arises in the tautochrone problem. This area has grown rapidly, and applications have been
found in several fields including solid mechanics, geophysics, physics, and mathematical
biology. Many mathematical models in the fields of solid mechanics, bio-rheology, nonlinear
dynamical systems in ecology, and so on, have been successfully modified using fractional
calculus. The fractional derivative exhibits nonlocal properties, and global dependency is
among the main reason to use. Kimmich considered anomalous diffusion and characterised
it by the time-fractional diffusion wave equation using the Riemann-Liouville fractional
integral. Povstenko [3,4] demonstrated the effect of fractional heat transportation in the
presence of thermal stresses.Many authothors[5-9] also discusses fractional calculus in
thermoelasticity.

Recently, Tzou[10,11] developed dual-phase-lag heat equation theory by incorporating
of two-phase-lags associated with temperature gradient heat flux vector. Two phase lag
parameters are related to the fastest - effects of thermal inertial. This theory is known
as dual-phase-lag (DPL) model. Later three-phase-lag (TPL) model was developed by
Roychoudhury [12].

In the present article, we consider two dimensional problem under TPL heat conduction
theory in present of electric and magnetic field . The governing equation are transformed
by normal modes. Finally the displacement component and temperature distribution are
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fixed out analytically from the vector matrix differential equation by eigenvalue method in
transformed domain.

2. Basic Equation

The system of governing equations of a rotating micropolar thermoelastic solid is
given by[12,13]

Oij,j+Fi = p[ﬁi—l—QX (qu)i—i—(ZQXl;l)i] 1
mij; + €ijroiy = Jp[Q + (QAX P)j] ()
ay i — e — wip = B +m0 = peyyp ®)
The components of the force stress and couple stress tensors are
. 0
oij = /\uméij + y(ui,j + uj,i) + k(u]-,l- - 61‘jr¢r> -p l,lléu )/T(G +v—= BT, ) 4)
mij = arrOij + PPij + yPji ©)
Fractional order Three-phase-lag Heat conduction without heat source as
%9 O e\l [, Tgor T % 96 J ..
[K (1—|— ' at‘)‘)_'_K(l—l—_'ﬁ)]G” —(1+ [ o + 2ol opa (pCEE +ﬁTOE(ekk))
(6)
and the strain components are
1 du Jdw
eij = 5 (uij +uji) and ege = (5= + ==) @)
3. Formulation of the problem
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The components of stress tensor and force tensor are written in the below form:
u dw d
oxe = (€1 +€2) 5+ (€1 = 1) 5= = (L +v5,)0 (12)
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du J

dw
0z = (e1+€) 5=+ (e1-1) 5=~ (1+v5)0 (13)
ou Jw
Oxz = E + €2£ - (62 - 1)(]52 (14)
Jw ou
Ozx = a + 625 - (62 - 1)@2 (15)
(e2-1) g
- = 1
Mzy €4 0z (16)
_ (e2-1) dg,
My = e o 47
where €;,i = 1(1)9 are given in Appendices.
To simplify the equations (1)-(7) we use the non-dimensional variables as below
(x',2") = B (x,2), (', 1, T, Ty T, v") = Mo(t, to, To, Tg, T1,0), QO = 2 s

2
* =\ __ Pcono * i * O',']‘ * 77Omij [ pC0¢2
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Where
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Equations (8)-(17) takes the above form dropping the * for convenience.

4. Normal mode analysis

The decomposition of the solution of the physical variables under consideration has
the following form in the normal mode

(u/ w, I!}/ 9/ (PZ/ Ojk)(x/ z, t) = (ﬂ/ wr l;[_}/ 9/ (Z;Z/ O_]k) (x)e(5t+iqz);j,k =X,z (19)

where i1, @, 6, ¢y, Tiks Q are the amplitudes of the functions,s is a complex constant,i =

V-1 and g is the wave numbers in the z-direction.
Using above equations we get the vector matrix differential equation as

Z oAz (20)

where i6y dO i
- - dido ddy dO dy
- (u/w/ 2, 9/1,[}/ dx/ dx/ dx /dx/ dx) (21)
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n+1

(5+T05+22]:1 (:,q+1)|5'1+1) . . .
— and all the components of matrix A in equation-(22)
(1+ZnN:1 T(?sn)

are given in Appendices.

Where p;; =

A

5. Solution:

The following equation represents the matrix A’s characteristic equation:
det(A-AI) =0 (23)

The eigenvalues of the characteristic equation (20) are taken in the form A = +A;
(i=1,2,34)
The eigen vector X corresponding to the eigen value A calculated as

T
X:[ I T, T3 T, AT; AT, ATs Ar4] (24)

where T'; (i, j=1,2,3,4) are given in Appendix. We construct the inverse of the matrix
V = (Xl,Xz,X3,X4,X5, Xé, X7,X8) = (Xi]‘)gxg, i,j = 1(1)8 as
v = (wyj), i j=1,2,3456,7,8

Then the solution of the differential Equation (23) is[14,15]

4
7= Z X;yj (25)
=1
00 8
y, = CeM* 4 eMx f Qe and Q, = wrjfj (26)
oo =
where C; is an arbitrary constant which is to be evaluated using initial and boundary
conditions.
4 Q]
_ (st+i (A
u=el wwz Xpj(Cie™ — Kj) (27)
=1
4 Q
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w = els W)Z Xo;(Cje* — XJ-) (28)
j=1
4 Q
_ (wt+ib (e Ax =i
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Using equations (27)-(29) simplifying the above equations we get the stress components
as follows-

4 4

0zz = @Y 6 ()N — My |, 02 = @Y CSy (x)eNF — My 30

-1y ]-4]
j:] j:l

4
Oxy = e(a)t-i—ibz)[
]:

4
C]S4] (x)eA/'x - M4], Oxz = €<wt+ibz)(2 C]-S3]-(x)eA/"‘ - M3J (31)

1 i=1
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4 4
My = e(a)t—i—ibz) Z st6jeij - Mg, My = e(wt+ibz) Z CjSSjeij - Ms (32)
= =
where C]- , Sij(x) and My (i=1,2,3,4,5,6,7; j=1,2,3,4; k=1,2,3,4,5,6,7) are given in the
appendix.

6. Discussion

We discuss TPL model in figures 1, 2 and 3. In figure 1 the fractional order parameter
a has a significant effect on the temperature distribution, where increasing on a causes
increasing on and the rate of change of with respect to x also increases when « increases at
fixed t=0.1.

In figure 2 When fractional order a=0.6,time t=0.1 are fixed and other constants are
same ,then u displacement distribution starts with negative values for DPL, LS, CT theory.
u- distribution upto x=1.2 for LS model is greater than DPL model and CT model. After
x=1.2 the result is reversed.

In figures 3 the fractional parameter has significant effects on the stress oyy ,0xy, distri-
bution. Both starts from zero initially which shows that they satisfy boundary condition.
Increasing of fractional parameter « causes decreasing the absolute values of the stresses,
and the rate of change of them with respect to x also increase when « increases.For the fixed
value of x the stress oy, distribution has the lowest value for the fractional parameter a=0.2
in the range 0 < x < 1.0. For x > 1.0 the distribution gradually increases towards zero.

7. Conclusions

In this work, the effect of the heat source, fractional order and phase lag parameters
on the temperature distribution, displacement components, the stress components have
been studying for a two-dimensional problem in a half space micreopolar thermoelastic
material is considered with the context of the fractional order thermoelasticity theory caring
a heat source. We found that, the fractional order parameter has significant effects on all the
studied fields and the results supporting the definition of the classification of the thermal
conductivity of the materials. We also found significant effects of phase lag parameters.
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Appendix A
Appendix A.1
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