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Abstract: This paper considers opportunity-based block replacement problems, where the inter-
arrival times of replacement opportunities arrive randomly. Specifically, we first propose the
opportunity-based block replacement models under the replacement first and last disciplines in
the sense of Zhao and Nakagawa (2012). Then, we derive the optimal replacement policies under
the replacement first and last disciples. Finally, numerical examples are presented to compare these
optimal replacement policies.
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1. Introduction

Various simple but realistic preventive maintenance (PM) policies have been exten-
sively studied to maintain system dependability. PM is generally a set of activities, includ-
ing repair maintenance, age replacement, periodic replacement, and block replacement [1].
These activities can be performed before a system failure to reduce the maintenance cost
at failure time and improve system reliability. Among these replacement policies, block
replacement is a common method for maintaining the reliability of systems that consist of
a block or group of units. However, as systems become more complex and stochastic, a
random maintenance policy would fit more for the systems and should be done rather than
a deterministic one [2]. Several random block replacement models have been proposed. For
example, Sheu [3] presented a block replacement policy with used items and considered
general random minimal repair cost, and he further generalized the replacement by taking
account of random shocks [4]. Anisimov [5] analyzed asymptotic properties of stochastic
block replacement policies in a Markov environment. In [6], Sheu et al. reformulated the
block replacement models in which the occurrence of shocks obeys a non-homogeneous
pure birth process. Yao and Zhou [7] proposed a new type of uncertain random process
for block replacement, called the uncertain random renewal reward process, where the
inter-arrival times and the rewards were assumed to be random variables and uncertain
variables, respectively. Park and Pham [8] elaborated on cost models by examining the
renewable and non-renewable warranty policies subject to minimal repair within the war-
ranty period and the post-warranty period. Recently, Sheu et al. [9] discussed a preventive
replacement policy with the concept of replacement last under cumulative damage models,
and determined the optimal policies that minimize the average cost rate.

On the other hand, opportunity plays an important role in preventive replacement.
The opportunity is a chance to make the replacement, and one can replace a unit with a low
cost at the opportunity. Dekker and Smeitink [10] considered a block replacement model in
which replacement can be replaced preventively at maintenance opportunities. Cavalcante
et al. [11] proposed an inspection and opportunistic replacement policy for one-unit systems.
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Zhao and Nakagawa [12], Zhao et al. [13], and Zhao et al. [14] formulated somewhat
different opportunity-based models, called replacement first (RF) and replacement last
(RL). Essentially, RF and RL disciplines mix standard and random age replacement. In
context, the RF discipline is described as a preventive replacement that is performed at
an opportunity arrival time or a pre-scheduled replacement time, whichever occurs first.
Conversely, the RL discipline is that a preventive replacement is performed at an arrival
time of opportunity or a pre-scheduled replacement time, whichever occurs last [15]. In this
paper, we formulate the block replacement models under RF and RL disciplines in sense of
Zhao and Nakagawa [6]. Moreover, we extend the minimal repair model, a special case of
block replacement models, where preventive replacement cost is not equal to opportunistic
replacement cost.

The remainder of this paper is organized as follows. Section 2 describes the models
and derives the average cost functions. In Section 3, a numerical illustration is presented to
compare these optimal policies under the RF and RL disciplines. Section 4 concludes the
paper with directions for future work.

2. Model Description
2.1. Notation and Assumption

Consider a unit that undertakes the preventive replacement at the pre-scheduled
replacement time or an opportunity. Replacements are assumed to occur instantaneously.
The lifetime of the unit is represented by the continuous random variable (r.v.) X. Let
F(t), f (t), M(t), and m(t) denote the corresponding cumulative distribution function
(c.d.f.), probability density function (p.d.f.), renewal function, and renewal density function,
respectively. Opportunities occur according to a renewal process, independently of the
lifetime process. Without loss of generality, the failure rate function is given by h(t) =
f (t)/F(t). Let the continuous r.v. Y denote the inter-arrival time between two consecutive
opportunities, and G(t) and g(t) represent its corresponding c.d.f. and p.d.f., respectively.
Besides, we denote the following replacement costs:

• cF: The failure replacement cost.
• cP: The preventive replacement cost.
• cY: The opportunistic replacement cost.
• cM (< cF): The minimal repair cost at a failure.

Note that it is generally supposed that cF > cP ≥ cY. It would be valid to assume that the
corrective replacement cost, cF, is the most expensive. The opportunistic replacement cost,
cP, is less than that of the preventive replacement, because the opportunity means a chance
to make the replacement, and one can replace a unit with a low cost at the opportunity.
Osaki [16] summarized several basic models of block replacement policies. In this paper,
we formulate two more common models among these models; that is, block replacement
models and minimal repair models, under RF and RL disciplines.

2.2. Block Replacement Model
2.2.1. Block Replacement Model with RF

Suppose that the unit is replaced at a total operating time T (0 < T < ∞) or at a
random working cycle Y, whichever occurs first, and undergoes failure repair at each
failure between replacements. Let C(T) denote the long-run average cost in the steady
state. Then we have

C(T) =
B(T)
A(T)

, (1)

where A(T) and B(T) are the expected cycle length and the expected cost per cycle, respec-
tively. Note that a cycle corresponds to the time length between consecutive renewal points,
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including preventive replacement, opportunistic replacement, and failure replacement. It
is straightforward to derive A(T) and B(T) as

A(T) =
∫ T

0
G(t)dt, (2)

B(T) = cF

∫ T

0
G(t)m(t)dt + cYG(T) + cPG(T)

= cP + cF

∫ T

0
G(t)m(t)dt− (cP − cY)G(T). (3)

Our purpose is to derive the optimal preventive time T∗ minimizing the long-run average
cost C(T). Thus, differentiating C(T) with respect to T and setting it equal to zero yield

cF

∫ T

0
G(t)[m(T)−m(t)]dt− (cP − cY)

∫ T

0
G(t)[r(T)− r(t)]dt = cP, (4)

where r(t) = g(t)/G(t) is called the hazard rate function. Denoting Q1(T) as the left-hand
of Eq. (4), we have

Q1(0) = 0 < cP. (5)

Theorem 1. Suppose that m(t) is increasing in t and h(t) is decreasing in t.

1. If Q1(∞) ≥ cP, then there exists a finite and unique T∗ (0 < T∗ < ∞) and the resulting
cost rate is

C(T∗) = cFm(T∗)− (cP − cY)r(T∗). (6)

2. If Q1(∞) < cP, then the optimal replacement time is given by T∗ → ∞.

2.2.2. Block Replacement Model with RL

For the model under RL discipline, the expected cycle length A(T) and the expected
cost per cycle B(T) are given by

A(T) = TG(T) +
∫ ∞

T
tg(t)dt = T +

∫ ∞

T
Ḡ(t)dt, (7)

B(T) = cF

(
M(t)G(t) +

∫ ∞

T
m(t)G(t)dt

)
+ cPG(T) + cYG(T)

= cP + cF

(
M(T) +

∫ ∞

T
G(t)m(t)dt

)
− (cP − cY)G(T), (8)

respectively. After substituting Eqs. (7) and (8) into Eq. (1), the long-run average cost
function C(T) is obtained. We then differentiate C(T) with respect to T and set it equal to
zero, and finally have

cF

[∫ T

0
[m(T)−m(t)]dt +

∫ ∞

T
G(t)[m(T)−m(t)]dt

]
+ (cP − cY)

[
r̂(T)T + r̂(T)

∫ ∞

T
G(t)dt + G(t)

]
= cP, (9)

where r̂(t) = g(t)/G(t) is called the revised hazard rate function. Let Q2(T) denote the
left-hand of the above equation.

Theorem 2. Suppose that cFm(T) + (cP − cY)r̂(T) is increasing in T.
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1. If Q2(0) < cP < Q2(∞) then there exists a finite and unique T∗ (0 < T∗ < ∞) and the
resulting cost rate is

C(T∗) = cFm(T∗) + (cP − cY)r̂(T∗). (10)

2. If Q2(0) ≥ cP, then the optimal replacement time is T∗ = 0.
3. If Q2(∞) ≤ cP, then the optimal replacement time becomes T∗ → ∞.

2.3. Minimal Repair Model

Zhao and Nakagawa [7] supposed that the cost of preventive replacement equals to
the cost of opportunistic replacement. Obviously, it is not realistic. In this section, we
reformulate the minimal repair model under RF and RL disciplines [9] where the cost of
preventive replacement is not equal to the cost of opportunistic replacement. Similar to the
block replacement models described in Sect. 2.2, we introduce the minimal repair models
under both RF and RL disciplines as follows.

2.3.1. Minimal Repair Model with RF

Suppose that the unit is replaced at a total operating time T (0 < T ≤ ∞) or at
opportunities Y, whichever occurs first, and undergoes minimal repair at each failure
between replacements. The expected cost rate C(T) is given by

C(T) =
cP + cM

∫ T
0 G(t)h(t)dt− (cP − cY)G(T)∫ T

0 G(t)dt
. (11)

Differentiating C(T) with respect to T and setting it equal to zero, we have

cM

∫ T

0
G(t)[h(T)− h(t)]dt− (cP − cY)

∫ T

0
G(t)[r(T)− r(t)]dt = cP. (12)

Let Q3(T) denote the left-hand of the above equation, that is

Q3(0) = 0 < cP. (13)

Theorem 3. Suppose that h(t) is increasing in t and r(t) is decreasing in t.

1. If Q3(∞) ≥ cP, then there exists a finite and unique T∗ (0 < T∗ < ∞) and the resulting
cost rate is

C(T∗) = cMh(T∗)− (cP − cY)r(T∗). (14)

2. If Q3(∞) < cP, then the optimal replacement time is T∗ → ∞.

2.3.2. Minimal Repair Model with RL

Suppose that the unit is replaced at a total operating time T (0 < T ≤ ∞) or at
opportunities Y, whichever occurs last. The expected cost in the long-run time C(T) under
RL discipline is given by

C(T) =
cP + cM

[
H(T) +

∫ ∞
T G(t)h(t)dt

]
− (cP − cY)G(T)

T +
∫ ∞

T G(t)dt
, (15)

where H(t) =
∫ t

0 h(u)du.
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Table 1. Comparison of block replacement models under RF and RL (λ = 1, σ = 2, cF = 200).

cY = 10 cY = 5
RF RL RF RL

cP T∗ C(T∗) T∗ C(T∗) T∗ C(T∗) T∗ C(T∗)
10 0.5005 63.25 0.5034 63.46 0.5005 53.25 0.3986 63.14
12 0.5902 69.28 0.5442 66.32 0.5902 59.28 0.5203 66.02
14 0.6898 74.83 0.5868 69.07 0.6898 64.83 0.6945 68.79
16 0.8047 80.00 0.6315 71.72 0.8047 70.00 0.7933 71.45
18 0.9437 84.85 0.6784 74.25 0.9437 74.85 0.9607 74.02
20 1.1242 89.44 0.7278 76.67 1.1242 79.44 1.1164 76.47
22 1.3910 93.81 0.7800 78.98 1.3910 83.81 1.4426 78.81
24 1.9509 97.98 0.8355 81.19 1.9509 87.98 1.8901 81.04
26 ∞ 200 0.8946 83.29 ∞ 200 2.4520 83.16

Differentiating C(T) with respect to T and setting it equal to zero, we have

cM

[∫ T

0
[h(T)− h(t)]dt +

∫ ∞

T
G(t)[h(T)− h(t)]dt

]
+ (cP − cY)

[
r̂(T)T + r̂(T)

∫ ∞

T
G(t)dt + G(t)

]
= cP. (16)

Let Q4(T) denote the left-hand of the above equation.

Theorem 4. Suppose that cMh(T) + (cP − cY)r̂(T) is increasing in T.

1. If Q4(0) < cP < Q4(∞), then there exists a finite and unique T∗ (0 < T∗ < ∞) and its
resulting cost rate is

C(T∗) = cMh(T∗) + (cP − cY)r̂(T∗). (17)

2. If Q4(0) ≥ cP, then the optimal replacement time is T∗ = 0.
3. If Q4(∞) ≤ cP, then the optimal replacement time becomes T∗ → ∞.

3. Numerical Examples

Suppose that the lifetime time X of an unit follows a Gamma distribution with the
p.d.f. f (t) =

[
λ(λt)α−1/Γ(α)

]
e−λt in which Γ(α) =

∫ ∞
0 xα−1e−xdx, 0 < x < ∞ and α = 2,

i.e., F(t) = 1− (1 + λ)e−λt [2]. Then, we have

m(t) =
1
2

λ
(

1− e−2λt
)

,

M(t) =
1
2

λt +
1
4

e−2λt − 1
4

. (18)

Furthermore, G(t) = 1− e−σt.
Table 1 presents the optimal preventive time T∗ and the minimum expected cost C(T∗)

with the optimal preventive time for block replacement with cY = 5 and 10. It is clear that
when cP/cF is small, the model under RF is better than the one under RL. In particular,
when the value of cY is small, the tendency becomes more significant.

The optimal preventive time T∗ and the corresponding minimum expected cost C(T)∗
for minimal repair with cY = 5 and 10 are demonstrated in Table 2. From the table, we
see that when cP = cY, the model under RL outperforms the one under RF. When cP > cY,
if cP/cF is small, the replacement first is better than the replacement last. Conversely, if
cP/cF is big enough, the replacement last is better than the replacement first.
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Table 2. Comparison of minimal repair models under RF and RL (λ = 1, σ = 2, cM = 100).

cY = 10 cY = 5
RF RL RF RL

cP T∗ C(T∗) T∗ C(T∗) T∗ C(T∗) T∗ C(T∗)
10 0.8485 45.29 0.6837 40.82 0.8485 35.29 0.5498 40.43
15 1.3408 57.27 0.8624 46.65 1.3408 47.27 0.7679 46.17
20 2.0934 67.69 1.0480 51.33 2.0934 57.69 0.9778 51.08
25 3.4908 77.73 1.2404 55.36 3.4908 67.73 1.1875 55.31
30 7.1528 87.75 1.4396 59.19 7.1528 77.75 1.3997 58.97
35 43.15 97.74 1.6461 62.21 43.15 87.74 1.6162 62.12
40 ∞ 100 1.8604 65.04 ∞ 100 1.8383 65.00
45 ∞ 100 2.0832 67.57 ∞ 100 2.0672 67.55
50 ∞ 100 2.3153 69.85 ∞ 100 2.3038 69.81

4. Concluding Remarks

In this paper, we presented opportunity-based block replacement models under re-
placement first and last disciplines. We characterized the uniqueness of the optimal sched-
uled preventive replacement times, which minimize the expected costs per unit time in the
steady state. In the numerical example, we compared two replacement policies, replace-
ment first policies and replacement last policies. In block replacement models, replacement
first is better than replacement last in some limited cases where cP/cF is small. In minimal
repair models, if cP/cF is big enough, the replacement last is better than the replacement
first.

In future work, we will generalize opportunity-based block replacement models using
Markov arrival process, since as pointed out by Zheng et al. [10], it is more realistic to
consider the case where the arrivals of opportunities obey a Markov process.
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