Synthesis, Characterizations and application of Sb₂Se₃ in solar cell with ZnSe as buffer layer

Raman Kumari, Vidya Nand Singh

New Delhi-110012, India

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg,

INTRODUCTION

- \clubsuit Sb₂Se₃ is non-toxic and earth abundant material.
- \bullet It is a p-type material having a high absorption coefficient (>10⁵ cm⁻¹) [1] and optimal band gap (~1.2 eV) [2].

Sb₂Se₃ is a very promising solar absorber material because of its optical and electrical properties.

OBJECTIVE

The films were deposited using thermal vapor deposition technique and are generally amorphous. So, heat treatment was used to enhance its crystallinity. XRD, UV-Vis, and Raman characterizations were done.

* With the help of numerical simulation by SCAPS-1D, the performance of the Sb₂Se₃/ZnSe structure is studied.

 \bullet The parameters of p-Sb₂Se₃ such as thickness, and bandgap, obtained experimentally, were used in the numerical study.

CONCLUSION

A direct bandgap of 1.7 eV and thickness of 520 nm is achieved when Sb₂Se₃ film is annealed at 200 °C. Using these

properties of Sb₂Se₃ from experimental data, we simulated the p-Sb₂Se₃/n-ZnSe solar device with the help of SCAPS numerical software. After optimizing all the parameters (ZnSe thickness and bandgap are 60nm and 2.8 eV), the efficiency of 10.78 % is achieved.

REFERENCES

- Zhou, M., Xia, Z., Zhong, J., Song, H., Liu, X., Yang B., Jhang J., Han J., Chang Y., & Tang, J. (2014). Advanced Energy Material, 1301846.
- 2. Kamruzzaman, M., Liu, C., Farid Ullslam, A.K.M., (2017). Semiconductors, 1615–1624.