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Abstract 

The non-stochastic and stochastic atom-based quadratic indices are applied to develop 

quantitative structure-activity relationship (QSAR) models for the prediction of aquatic 

toxicity. The used dataset, consisting of 392 benzene derivatives for which toxicity data to the 

ciliate Tetrahymena pyriformis were available, is divided into training and test sets. The 

obtained multiple linear regression models are statistically significant (R2 = 0.787 and s = 

0.347, R2 = 0.806 and s = 0.329, for non-stochastic and stochastic quadratic indices, 

respectively) and show rather good stability in a cross-validation experiment (q2 = 0.769 and scv 

= 0.357, q2 = 0.791 and scv = 0.337, correspondingly). In addition, a validation through an 

external test set is performed, which yields significant values of R2
pred of 0.745 and 0.742. The 

comparison with other approaches exposes a good behavior of our method of predicting the 

aquatic toxicity of benzenes. The obtained results suggest that, the non-stochastic and 

stochastic quadratic indices seem to provide an interesting alternative to costly and time-

consuming experiments for determining toxicity. 

 

Keywords: Atom-based non-stochastic and stochastic linear index, Multiple linear 
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1. Introduction 

Benzene is a parent compound for a wide variety of derivatives, many of which are among the 

most prevalent industrial organic chemicals in the world, as defined by the High Production 

Volume Chemicals list [1]. It´s chemical caracteristics (bond angles of 120°, sp2-hybrid 

orbitals, as well as π-bonds derived from p-atomic orbitals and equally extending around the 

ring) impart the aromatic nature of the substance. With this delocalization, benzene does not 

exhibit the high reactivity typical of polyene compounds. However, this fact changes 

dramatically when benzene is substituted with unsaturated (e.g., π-bond-containing) 

funcionalities, especially in conjunction with leaving groups [2, 3]. Therefore, toxicity data on 

benzene derivatives are important for their use in risk assessment processes [4].  

While experimental testing provides the most reliable data about the effects of chemicals, it is 

not suitable to screen a large number of potential toxicants [5], because the generation of 

toxicological data is often a lengthy and costly process and, thus, predictive models in the form 

of quantitative structure-activity relationships (QSARs) are a necessary tool to fill data gaps in 

environmental risk assessment and regulatory concerns [6]. This kind of studies offers the 

advantages of higher speed and lower cost, especially when compared to experimental testing 

[5].  

The QSARs are powerful tools in predictive toxicology and are employed, as scientifically 

credible tools, to predict the acute toxicity of chemicals when few empirical data are available. 

The Office of Toxic Substances of the U.S. Enviromental Protection Agency has developed 

QSARs based on as little as one datum and assumptions about the nature of the relationship 

between a chemical class and its toxicity [7]. Consistent with the development and application 

of QSARs to the design of more efficacious pharmaceuticals and pesticides, it has been the 

increasing acceptance of structure-activity relationships for predicting the adverse effects of 

xenobiotics in risk assessment [8].  

In the development of an ecotoxicity-based QSAR, the connection of subjects (biology, 

chemistry, and statistics) has permitted the development of structure–activity relationships as 

an accepted sub-discipline in toxicology [9]. There are three elements in this subdiscipline: the 

toxicological data, the descriptor data, and the statistical method of linking the two data sets 

[10]. In additon, some issues have been recognized as topics of particular interest [11]: they are 

quality, transparency, domain identification, and validation. A quality QSAR only can be 

constructed and validated with quality data, but quality in QSARs is morethan a high 
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coefficient of determination. Transparency means that the data that are used in the development 

and validation of the models are available for examination and can also mean the amount of 

process information obtainable from the statistical method; it goes from the black boxes of 

genetic algorithms to interpretable multiple linear regression [12]. Since the use of a particular 

QSAR is only valid within its domain, the identification of that domain is critical to QSAR 

acceptability [11].  

In particular, the database of inhibition of growth database of ciliated protozoan Tetrahymena 

pyriformis [13] is considered to be a high-quality data set [14]. It has been developed in a 

single laboratory over more than two decades. Moreover, these data have been compiled for the 

main purpose of QSAR development and validation. In recent years, many works have been 

reported using T. pyriformis to develop linear models [5, 15-23]; additionaly, some non-linear 

methods were also applied [24-26] to predict aquatic toxicity in T. pyriformis. 

On the other hand, a novel scheme to the rational –in silico- molecular design and to 

QSAR/QSPR has been introduced by our research group: TOMOCOMD (acronym of 

TOpological MOlecular COMputer Design). It calculates several new families of 2D 

(D=dimention), 3D-Chiral (2.5) and 3D (geometric and topographical) non-stochastic and 

stochastic atom- and bond-based molecular descriptors, based on algebraic theory and discrete 

mathematics. These descriptors are denoted quadratic, linear and bilinear indices, and have 

been defined by analogy with the quadratic, linear and bilinear mathematical maps [27-32]. 

These approaches describe changes in electron distribution with time throughout molecular 

backbone, and they have been successfully employed in the prediction of several physical, 

physicochemical, chemical, biological, pharmacokinetic and toxicological properties of organic 

compounds [33-42], including studies related to proteomics [43, 44] and nucleic acid-drug 

interactions [45, 46]. Besides, these indices have been extended to consider the three-

dimensional features of small/medium-sized molecules based on the trigonometric 3D-chirality 

correction factor approach [47-51]. 

The present report is written with the objective of testing the applicability of the atom-based 

quadratic indices in ecotoxicological research. Therefore, we shall develop QSAR models for 

the prediction of aquatic toxicity for a large group of substituted benzenes, tested on the 

impairment assay of the population growth of T. pyriformis. 

2. Materials and Methods 

2.1. TOMOCOMD-CARRD approach. 

For the computation of the atom-based quadratic indices we used software TOMOCOMD [52]. 

It is an interactive program for molecular design and bioinformatic research, which contains 
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four routines: CARDD(Computed-Aided Rational Drug Design), CAMPS (Computed-Aided 

Modeling in Protein Science), CANAR (Computed-Aided Nucleic Acid Research) and CABPD 

(Computed-Aided Bio-Polymers Docking); every one of them allows both drawing the 

structures (drawing mode) and calculating molecular 2D/3D descriptors (calculation mode). In 

the present report, we outline salient features concerned with only one of these routines, 

CARDD, and with the calculation of atom-based non-stochastic and stochastic quadratic 

indices, considering and not considering H-atoms in the molecular pseudograph (G). 

The main steps for the application of this method in quantitative structure-activity/toxicity 

relationships (QSAR/QSTR) and for drug design were the same as the ones that we used in an 

earlier publication for the non-stochastic and stochastic atom-based linear indices [42].  

The descriptors computed in this work were the following:  

1) qk(x) and qk
H(x) are the kth atom-based non-stochastic total quadratic indices, not considering 

and considering H-atoms,  respectively, in the molecule 

2) qkL(xE) and qkL
H(xE) are the kth atom-based non-stochastic local (atom-type = heteroatoms: S, 

N, O) quadratic indices, not considering and considering H-atoms, respectively, in the 

molecule.    

 3) qkL
H(xE-H) are the kth atom-based non-stochastic local (atom-type = H-atoms bonding to 

heteroatoms: S, N, O) quadratic indices, considering H-atoms in the molecular pseudograph 

(G). 

Therefore, the kth atom-based stochastic total [sqk(x) and sqk
H(x)], as well as local [sqk(xE), 

sqk
H(xE) and sqk

H(xE-H)] quadratic indices were also computed.  

2.2 Chemical database selection. 

Biological data is central to the issues of quality, transparency, and domain identification as 

they relate to toxicological QSAR. High-quality toxicity data, in a structurally diverse set of 

molecules, are required to formulate and validate high-quality QSARs. Quality toxicity data 

typically come from standardized assays, measured in a consistent manner, with a clear and 

unambiguous endpoint, and lower experimental error [12]. Toxicity assessments that are made 

in a single laboratory by a single protocol tend to be the most precise ones.  Taking into 

consideration these points, we select the database of the inhibition of growth of the ciliated 

protozoan T. pyriformis. This database has been developed in a single laboratory over more 

than two decades, and it has been recognized as a high-quality data set [14]. While numerous 

workers, using slight variations in the static protocol and nominal concentrations, have 

generated the data, the data set still remains an excellent primary source of information: it is 

also unique in terms of size, molecular diversity, and quality. 
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The general data set used in this study has been recently published by other researchers [12]. It 

consists of almost 400 substituted benzenes, representing several mechanisms of toxic action. 

Some compounds were reported by Schultz and Netzeva as non-toxic at saturation; hence these 

compounds were not used in the present work. A horizontal validation was performed using a 

training set, composed of 313 benzene derivatives, for model development and a validation set 

(79 compounds) to assess the predictive capability of the QSAR models. In order to split the 

database into training and prediction series, a k-means cluster analyses (k-MCA) was carried 

out for the entire data set to design, in a rational representative way, the training (learning) and 

prediction (test) series [53, 54].  

2.3. Chemometric Methods.  

2.3.1. Cluster Analysis. The cluster analysis (CA) is the name of a group of methods used to 

recognize similarities among cases (objects) or among variables and to single out some 

categories as a set of similar cases (or variables) [55].  This CA comprehends a number of 

different ‘classification algorithms’ and allows organizing the data into subsystems. These 

algorithms are grouped into two categories: hierarchical clustering and partitional (non-

hierarchical) clustering. Hierarchical clustering rearranges objects in a tree-structure (joining 

clustering), in an agglomerative (bottom-up) procedure. On the other hand, partitional 

clustering assumes that the objects have non-hierarchical characters [53-56]. 

The most used cluster algorithms are the k-means cluster analysis (k-MCA) and Jarvis-Patrick 

algorithm (also known as k-nearest neighbor cluster analysis, k-NNCA); in our case, in order to 

design the training and test series to guarantee structural and toxicity  variabilities in both 

series of the present database, we carried out both kinds of cluster analyses (k-MCA and k-

NNCA) for the entire dataset of compounds [53-56]. The number of members in every cluster 

and the standard deviation of the variables in the cluster (kept as low as possible) were taken 

into account to have an acceptable statistical quality of data partition into clusters. The values 

of the standard deviation (SD) between and within clusters, those of the respective Fisher ratio 

and their p-level of significance were also examined [53-56]. Finally, before carrying out the 

cluster processes, all the variables were standardized. In the standardization, all values of 

selected variables (molecular descriptors) were replaced by standardized values, which were 

computed as follows: Std. score = (raw score - mean)/Std. deviation. 

2.3.2. Multiple Linear Regression. In the prediction of aquatic toxicity against T. pyriformis, 

the multiple linear regression (MLR) analysis was used as statistical method. This experiment 

was performed with software package STATISTICA [56]. The considered tolerance parameter 

(proportion of variance that is unique to the respective variable) was the default value for 
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minimum acceptable tolerance, which was 0.01. Forward stepwise procedure was fixed as the 

strategy for variable selection. The principle of maximal parsimony (Occam's razor) was taken 

into account as the strategy for model selection. Therefore, we selected the model with the 

highest statistical signification, but having as few parameters (ak) as possible. The log (IGC50)–

1 (decimal logarithm of the inverse 50 percent growth inhibitory concentration) values, 

concentration reported as mmol/L, were used as the dependent variable. 

The quality of the models was determined by examining the regression’s statistical parameters 

and those of the cross-validation procedures [57, 58]. Therefore, the following parameters were 

verified: the correlation coefficient (R), determination coefficient or square correlation 

coefficient (R2), Fisher-ratio’s p-level [p(F)], standard deviation of the regression (s) and the 

leave-one-out (LOO) press statistics (q2, scv). The predictive powers of the obtained models 

were assessed by using an external prediction (test) set. 

3. Results and Discussion  

3.1. Similarity Analysis and the Design of Training and Test Sets.  

As we mentioned above, the quality of any QSAR model depends on the quality of the selected 

data set, but one of the most critical aspects is to warrant enough molecular diversity for the 

training set. We performed a hierarchical CA of the entire dataset to demonstrate the structural 

diversity of this data set, [53, 54]. The dendrogram (binary tree) is given in Figure 1; using the 

Euclidean distance (X-axis) and the complete linkage (Y-axis), it illustrates the results of the k-

NNCA developed for the dataset. As it can be observed in the binary tree there is a number of 

different subsets, which proves the molecular variability of the selected chemicals in these 

database.  
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Figure 1. A dendrogram illustrating the results for the hierarchical k-NNCA developed for the 
dataset. 
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Due to the difficulty in evaluating the output dendrogram, other kind of CAs is usually 

performed. Therefore, we perform a k-MCA with the objective of spliting the whole group into 

two data sets (training and predicting ones). The main idea of this procedure consists in making 

a partition of the chemicals into several statistically representative classes of compounds. This 

procedure ensures that any chemical class (as determined by the clusters derived from k-MCA) 

will be represented in both compounds’ series. This “rational” design of the training and 

predicting series allowed us to devise both sets that are representative of the whole 

“experimental universe”. This procedure splits the dataset of benzene derivatives into 9 

clusters. 

Finally, we select the training and prediction sets by taking, in a random way, compounds 

belonging to every cluster. From these 392 benzene derivatives, 313 compounds were chosen 

as the training set. The remaining subset, composed of 79 compounds, was used as the test set 

for the external validation of the models. These compounds were never used in the 

development of the QSAR models. This procedure is illustrated graphically in Figure 2. The 

CA was performed to select a representative sample of the training and test sets. 

 
Figure 2. General algorithm used for designing training and test sets throughout k-MCA 

3.2. Development of the models of prediction of  aquatic toxicity. 

In order to evaluate the applicability of the non-stochastic and stochastic atom-based quadratic 

indices for predicting aquatic toxicity, the whole data set was divided into training and test sets, 

as we described above. The MLR analysis was used to develop QSAR models for the 

prediction of aquatic toxicity against T. pyriformis. The toxicity values to T. pyirformis for the 

benzene derivatives of the training set are presented in Table 1. 
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The model obtained by using atom-based non-stochastic linear indices is the following: 

Log (1/IGC50) = -0.899(±0.106) +7.06x10-2(±0.58x10-2)Pq1L(xE)  

                         +2.87x10-2(±0.20x10-2)Kq0(x) -1.68x10-2(±0.18x10-2)Gq2L
H(xE)  

                         +1.29x10-2(±0.17x10-2)Gq2L(xE) -1.97x10-6(±0.29x10-6)Gq7
H(x) 

                        -1.85x10-3(±0.33x10-3)Vq2L
H(xE-H) +2.88x10-10(±0.55x10-10)Vq15L

H(xE-H)       (1) 

N = 313                 R2 = 0.730           s = 0.396          F = 118.04            p < 0.0001  

q2 =  0.697            scv = 0.415        

where N is the size of the data set, R is the correlation coefficient, R2 is the determination 

coefficient, s is the standard deviation of the regression, F is the Fischer ratio, q2 (scv) is the 

square correlation coefficient (standard deviation) of the cross-validation performed with the 

LOO procedure. 

As can be seen, the obtained model (Eq. 1) explains 73% of the experimental variance of the 

aquatic toxicity with adequate value of 0.396 of standard deviation. However, eight compounds 

were detected as statistical outliers (006, 020,074, 156, 215, 335, 354 and 360) and showed 

large values of standard residual. These compounds and their residual values are reported in 

Table 2. Once rejected these outlier compounds, a new non-stochastic model (Eq. 2) was 

obtained with better statistical parameters:   

Log (1/IGC50) = -1.302(±0.116) +7.55x10-2(±0.53x10-2)Pq1L(xE)  

                         +3.12x10-2(±0.18x10-2)Kq0(x) -1.77x10-2(±0.16x10-2)Gq2L
H(xE)  

                         +1.33x10-2(±0.16x10-2)Gq2L(xE) -1.47x10-6(±0.32x10-6)Gq7
H(x) 

                        -1.48x10-3(±0.30x10-3)Vq2L
H(xE-H) +2.41x10-10(±0.50x10-10)Vq15L

H(xE-H)        (2) 

N = 305             R2 = 0.787            s = 0.347            F = 156.61           p < 0.0001  

q2 =  0.769          scv = 0.357           R2
pred = 0.745 

where R2
pred is the square correlation coefficient for the external prediction set.  

This new model explains almost the 79 % of the experimental variance, and a small value of 

standard deviation  of 0.347; the other statistical parameters were also improved. In order to 

assess the predictability and stability of the obtained models using non-stochastic linear indices 

(Eqs. 1 and 2) for data variation, we performed here a LOO cross-validation (LOO-CV). The 

second model obtained with non-stochastic quadratic indices (Eq. 2) showed a good value of 

square correlation coefficient q2=0.769; this value of q2 (q2 > 0.5) can be considered as a proof 

of the high-predictive ability of the model [57, 58]. This was corroborated with the predicition 

of an external set of compounds that were not included in the trainig set used to develop the 

model. The second QSAR model achieved a 13.97% decrease in scv with regard to the initial 

model, which contains some outliers. 
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Table 1. Experimental and predicted values [Log (1/IGC50)] for the training set.  
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs.a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

benzene 71-43-2 -0.12 -0.083 -0.248 -0.195 -0.377 
p-xylene 106-42-3 0.25 0.199 0.110 0.109 0.014 
1-phenyl-2-butanol 120055-09-6 -0.16 0.605 0.563 0.105 0.159 
toluene 108-88-3 0.25 0.058 -0.068 -0.042 -0.180 
n-amylbenzeneb 538-68-1 1.79 0.784 -np- 0.885 0.878 
benzylamine 100-46-9 -0.24 -0.725 -0.723 -0.791 -0.819 
5-phenyl-1-pentanol 10521-91-2 0.42 0.374 0.435 0.440 0.496 
α,α-dimethylbenzenepropanol 103-05-9 -0.07 0.578 0.642 0.309 0.399 
4-phenyl-1-butanol 3360-41-6 0.12 0.193 0.227 0.205 0.229 
benzyl alcohol 100-51-6 -0.83 -0.240 -0.308 -0.246 -0.345 
sec-phenethyl alcohol 98-85-1 -0.66 0.037 0.000 0.001 -0.054 
4-ethylbenzyl alcohol 768-59-2 0.07 0.084 0.083 0.120 0.100 
3-phenyl-1-butanol 2722-36-3 0.01 0.186 0.223 0.168 0.199 
(R)-1-phenyl-1-butanol 22144-60-1 -0.01 0.412 0.429 0.518 0.522 
4-biphenylmethanol 3597-91-9 0.92 0.391 0.612 0.219 0.432 
4-ethylbiphenylb,c 5707-44-8 1.97 0.832 -np- 0.621 -np- 
biphenyl 92-52-4 1.05 0.519 0.647 0.265 0.394 
(±)-1,2-diphenyl-2-propanol 5342-87-0 0.8 1.084 1.335 0.768 1.054 
3,4-dimethylaniline 95-64-7 -0.16 0.002 -0.019 -0.217 -0.224 
4-pentyloxyaniline 39905-50-5 0.97 0.645 0.702 0.922 0.990 
4-hexyloxyaniline 39905-57-2 1.38 0.830 0.915 1.155 1.256 
4-isopropylaniline 99-88-7 0.22 0.180 0.185 -0.005 0.025 
3-ethylaniline 587-02-0 -0.03 0.007 -0.018 -0.167 -0.179 
4-ethylaniline 589-16-2 0.03 -0.003 -0.027 -0.168 -0.181 
(2-bromoethyl)benzene 103-63-9 0.42 0.603 0.721 0.794 0.780 
2-methylaniline 95-53-4 -0.16 -0.110 -0.148 -0.342 -0.406 
2,6-diisopropylaniline 24544-04-5 0.76 0.869 0.971 0.518 0.668 
aniline 62-53-3 -0.23 -0.391 -0.463 -0.556 -0.652 
2,6-diethylaniline 579-66-8 0.31 0.448 0.480 0.161 0.232 
thioanisole 100-68-5 0.18 0.550 0.478 0.412 0.376 
3,4,5-trimethylphenol 527-54-8 0.93 0.410 0.400 0.371 0.342 
benzyl chloride 100-44-7 0.06 0.277 0.201 0.502 0.391 
2,4,6-trimethylphenol 527-60-6 0.42 0.422 0.410 0.289 0.272 
4-tert-butylphenol 98-54-4 0.91 0.590 0.606 0.555 0.565 
4-tert-pentylphenol 80-46-6 1.23 0.769 0.814 0.878 0.909 
2,3,6-trimethylphenol 2416-94-6 0.28 0.441 0.423 0.280 0.265 
anisole 100-66-3 -0.1 0.011 -0.103 0.077 -0.065 
2,4-dimethylphenol 105-67-9 0.14 0.267 0.215 0.155 0.092 
2-phenyl-3-butyn-2-ol 127-66-2 -0.18 0.443 0.503 0.262 0.305 
p-cresol 106-44-5 -0.16 0.070 -0.006 0.058 -0.059 
4-ethylphenol 123-07-9 0.21 0.250 0.203 0.279 0.197 
4-propylphenol 645-56-7 0.64 0.436 0.416 0.528 0.477 
nonylphenol 104-40-5 2.47 1.586 1.719 1.913 2.062 
m-cresol 108-39-4 -0.08 0.061 -0.014 0.041 -0.073 
o-cresol 95-48-7 -0.29 0.070 -0.006 0.008 -0.102 
2-ethylphenol 90-00-6 0.16 0.254 0.206 0.215 0.142 
phenol 108-95-2 -0.35 -0.104 -0.213 -0.128 -0.285 
2-allylphenol 1745-81-9 0.33 0.393 0.386 0.301 0.278 
iodobenzene 591-50-4 0.36 0.633 0.535 0.279 0.257 
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Table 1. Cont… 
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs. a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

2-tolunitrile 529-19-1 -0.24 0.180 0.167 -0.002 -0.045 
4-hydroxyphenethyl alcohol 501-94-0 -0.83 -0.102 -0.085 -0.004 -0.036 
2-chloro-4-methylaniline 615-65-6 0.18 0.297 0.282 0.275 0.248 
2-chloroaniline 95-51-2 -0.17 0.108 0.062 0.102 0.033 
5-pentylresorcinol 500-66-3 1.31 0.921 0.983 1.247 1.269 
3-methoxyphenol 150-19-6 -0.33 0.059 -0.016 0.160 0.045 
4-hexylresorcinolb 136-77-6 1.8 0.734 -np- 0.997 0.989 
4-chloro-3,5-dimethylphenol 88-04-0 1.2 0.731 0.717 0.735 0.697 
4-bromotoluene 106-38-7 0.47 0.541 0.468 0.475 0.398 
1-bromo-4-ethylbenzene 1585-07-5 0.67 0.713 0.670 0.682 0.642 
4-chloro-3-methylphenol 59-50-7 0.8 0.558 0.510 0.605 0.520 
bromobenzene 108-86-1 0.08 0.402 0.290 0.310 0.191 
4-chlorophenol 106-48-9 0.54 0.386 0.308 0.486 0.352 
4-iodophenol 540-38-5 0.85 0.699 0.636 0.607 0.603 
2-(4-chlorophenyl)ethylamine 156-41-2 0.14 -0.260 -0.162 -0.077 -0.041 
2.4-dichloroaniline 554-00-7 0.56 0.597 0.583 0.779 0.732 
chlorobenzene 108-90-7 -0.13 0.329 0.214 0.359 0.200 
3-chloroaniline 108-42-9 0.22 0.107 0.058 0.125 0.054 
1,2-dimethyl-4-nitrobenzene 99-51-4 0.59 0.730 0.711 0.704 0.649 
4-(pentyloxy)benzaldehyde 5736-91-4 1.18 1.055 1.090 1.467 1.503 
4-nitrotoluene 99-99-0 0.65 0.597 0.537 0.525 0.430 
4-isopropylbenzaldehyde 122-03-2 0.67 0.543 0.534 0.601 0.597 
1,2-dimethyl-3-nitrobenzene 83-41-0 0.56 0.724 0.706 0.654 0.606 
3-chlorophenol 108-43-0 0.87 0.386 0.308 0.470 0.338 
3-nitrotoluene 99-08-1 0.42 0.597 0.537 0.516 0.422 
1,4-dibromobenzene 106-37-6 0.68 0.974 0.892 0.760 0.712 
benzaldehyde 100-52-7 -0.2 0.066 -0.045 0.049 -0.073 
4-hydroxypropiophenone 70-70-2 0.12 0.645 0.639 0.453 0.449 
2,4-dichlorophenol 120-83-2 1.04 0.872 0.822 1.017 0.918 
valerophenone 1009-14-9 0.56 0.951 0.963 0.928 0.949 
propiophenone 93-55-0 -0.07 0.583 0.540 0.319 0.294 
butyrophenone 495-40-9 0.21 0.766 0.751 0.576 0.581 
2-hydroxybenzaldehyde 90-02-8 0.42 0.141 0.065 0.120 0.029 
heptanophenone 1671-75-6 1.56 1.323 1.388 1.434 1.515 
acetophenone 98-86-2 -0.46 0.406 0.334 0.107 0.046 
nitrobenzene 98-95-3 0.14 0.459 0.360 0.332 0.199 
octanophenone 1674-37-9 1.89 1.508 1.601 1.658 1.773 
2,5-dichloroaniline 95-82-9 0.58 0.598 0.578 0.783 0.741 
3,4-dichlorotoluene 95-75-0 1.07 0.997 0.939 0.985 0.903 
3-nitroaniline 99-09-2 0.03 0.270 0.233 0.096 0.048 
3,5-dichloroaniline 626-43-7 0.71 0.596 0.577 0.795 0.750 
3-nitroanisole 555-03-3 0.72 0.638 0.568 0.601 0.508 
benzophenone 119-61-9 0.87 0.885 1.064 0.633 0.810 
3-chloro-5-methoxyphenol 65262-96-6 0.76 0.951 0.948 0.823 0.810 
4-nitrobenzyl chloride 100-14-1 1.18 0.903 0.871 1.037 0.974 
2,4-dibromophenol 615-58-7 1.4 1.026 0.983 1.143 1.117 
2-amino-5-chlorobenzonitrile 5922-60-1 0.44 0.729 0.705 0.209 0.235 
2-hydroxy-4-methoxyacetophenone 552-41-0 0.55 0.662 0.657 0.504 0.511 
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Table 1. Cont… 
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs. a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

3,5-dichlorophenol 591-35-5 1.56 0.887 0.833 1.022 0.924 
4-chlorobenzophenone 134-85-0 1.5 1.355 1.567 1.146 1.351 
1,3,5-trichlorobenzene 108-70-3 0.87 1.327 1.264 1.312 1.219 
2,4,5-trichloroaniline 636-30-6 1.3 1.086 1.098 1.430 1.414 
4-bromobenzophenone 90-90-4 1.26 1.428 1.644 1.101 1.346 
2,4,6-trichlorophenol 88-06-2 1.41 1.350 1.333 1.559 1.494 
4-ethoxy-2-nitroaniline 616-86-4 0.76 0.798 0.815 0.756 0.785 
5-bromovanillin 2973-76-4 0.62 0.836 0.834 0.981 1.003 
4-nitrophenetole 100-29-8 0.83 1.152 1.168 0.917 0.932 
1-bromo-3-nitrobenzene 585-79-5 1.03 1.030 0.961 0.781 0.719 
4-bromo-2,6-dichlorophenol 3217-15-0 1.78 1.443 1.424 1.601 1.576 
2-chloro-6-nitrotoluene 83-42-1 0.68 1.088 1.056 0.944 0.890 
2,3,5,6-tetrachloroaniline 3481-20-7 1.76 1.577 1.619 2.048 2.067 
2,4,5-trichlorophenol 95-95-4 2.1 1.366 1.344 1.567 1.502 
1,2,4,5-tetrachlorobenzene 95-94-3 2 1.796 1.768 1.786 1.727 
4-methyl-2-nitroaniline 89-62-3 0.37 0.528 0.514 0.258 0.255 
1-chloro-3-nitrobenzene 121-73-3 0.73 0.957 0.885 0.831 0.728 
2,3,4,5-tetrachloroaniline 634-83-3 1.96 1.575 1.618 2.049 2.065 
2,4,6-tribromophenol 118-79-6 1.91 1.598 1.585 1.756 1.802 
2-bromo-5-nitrotoluene 7149-70-4 1.16 1.138 1.116 0.968 0.944 
1-fluoro-3-iodo-5-nitrobenzene 3819-88-3 1.09 1.579 1.552 1.072 1.099 
2-nitrophenol 88-75-5 0.67 0.549 0.482 0.391 0.293 
2-chloro-4-nitroaniline 121-87-9 0.75 0.745 0.742 0.732 0.711 
5-hydroxy-2-nitrobenzaldehyde 42454-06-8 0.33 0.711 0.694 0.730 0.679 
3,4,5,6-tetrabromo-o-cresol 576-55-6 2.57 2.326 2.383 2.448 2.609 
Pentafluoroanilineb 771-60-8 0.26 1.224 -np- 1.047 0.965 
1-bromo-2-nitrobenzene 577-19-5 0.75 0.999 0.939 0.759 0.699 
3,5-dichloro-nitrobenzene 618-62-2 1.13 1.426 1.388 1.334 1.261 
2,3,4,5-tetrachlorophenol 4901-51-3 2.72 1.843 1.855 2.093 2.064 
thiobenzamide 2227-79-4 0.09 0.325 0.357 -0.179 -0.125 
α,α,α, 4-tetrafluoro-m-toluidine 2357-47-3 0.77 1.009 1.037 0.724 0.690 
1-chloro-2-nitrobenzene 88-73-3 0.68 0.926 0.862 0.802 0.703 
4-chloro-6-nitro-m-cresol 7147-89-9 1.63 1.198 1.195 1.129 1.101 
pentachlorophenol 87-86-5 2.07 2.321 2.366 2.604 2.613 
1,3-dinitrobenzene 99-65-0 0.76 1.054 1.007 0.870 0.784 
2,4-dinitrotoluene 121-14-2 0.87 1.185 1.179 1.036 0.992 
4,5-dichloro-2-nitroaniline 6641-64-1 1.66 1.317 1.335 1.378 1.382 
pentafluorophenol 771-61-9 1.63 1.530 1.546 1.190 1.060 
pentabromophenol 608-71-9 2.66 2.708 2.768 2.975 3.158 
3-chloro-4-fluoronitrobenzene 350-30-1 0.8 1.246 1.209 1.183 1.068 
1,4-dinitrobenzene 100-25-4 1.3 1.025 0.985 0.909 0.817 
3,4-dichloronitrobenzene 99-54-7 1.16 1.396 1.366 1.361 1.284 
2,4-dichloro-6-nitroaniline 2683-43-4 1.26 1.295 1.313 1.346 1.359 
3,4-dinitrobenzyl alcohol 79544-31-3 1.09 0.996 1.089 1.115 1.139 
2,3-dichloronitrobenzene 3209-22-1 1.07 1.395 1.365 1.294 1.226 
1,2-dinitrobenzene 528-29-0 1.25 1.013 0.976 0.826 0.746 
phenyl isothiocyanatec 103-72-0 1.41 0.969 0.919 0.202 -np- 
3-trifluoromethyl-4-nitrophenol 88-30-2 1.65 0.800 0.792 0.937 0.854 
2,6-iodo-4-nitrophenol 305-85-1 1.81 1.169 1.157 1.030 0.925 
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Table 1. Cont… 
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs. a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

2,4-chloro-6-nitrophenol 609-89-2 1.75 1.511 1.507 1.502 1.465 
1,3,5-trichloro-2-nitrobenzene 18708-70-8 1.43 1.861 1.867 1.763 1.730 
1,2,4-trichloro-5-nitrobenzene 89-69-0 1.53 1.893 1.890 1.781 1.745 
1,2,3-trichloro-4-nitrobenzene 17700-09-3 1.51 1.893 1.890 1.759 1.726 
2-chloro-5-nitrobenzaldehyde 6361-21-3 0.53 1.070 1.061 1.116 1.067 
pentafluorobenzaldehyde 653-37-2 0.82 1.651 1.680 1.312 1.198 
2,4-dinitro-1-iodobenzene 709-49-9 2.12 1.826 1.831 1.271 1.355 
2,3,5,6-tetrachloronitrobenzene 117-18-0 1.82 2.359 2.392 2.198 2.204 
2,5-dinitrophenol 329-71-5 1.04 1.153 1.140 1.019 0.960 
2,4-dinitroaniline 97-02-9 0.72 0.973 0.977 0.729 0.725 
2,3,4,5-tetrachloronitrobenzene 879-39-0 1.78 2.361 2.393 2.235 2.236 
1,2-dichloro-4,5-dinitrobenzene 6306-39-4 2.21 1.979 2.004 1.833 1.812 
2,6-dinitroaniline 606-22-4 0.84 1.005 1.004 0.683 0.690 
4,6-dinitro-2-methylphenol 534-52-1 1.73 1.324 1.342 1.163 1.150 
4-tert-butyl-2.6-dinitrophenol 4097-49-8 1.8 1.856 1.965 1.847 1.936 
1,5-dichloro-2.3-dinitrobenzene 28689-08-9 2.42 1.977 2.002 1.785 1.771 
6-chloro-2.4-dinitroaniline 3531-19-9 1.12 1.441 1.476 1.340 1.368 
2-bromo-4.6-dinitroaniline 1817-73-8 1.24 1.525 1.563 1.487 1.548 
2,3,4,6-tetrafluoronitrobenzene 314-41-0 1.87 1.755 1.760 1.287 1.169 
Pentafluoronitrobenzenec 880-78-4 2.43 2.071 2.104 1.449 -np- 
1,4-dinitrotetrachlorobenzene 20098-38-8 2.82 2.921 3.014 2.649 2.715 
1,5-difluoro-2,4-dinitrobenzene 327-92-4 2.08 1.652 1.670 1.419 1.330 
1,3-dinitro-2,4,5-trichlorobenzene 2678-21-9 2.6 2.453 2.511 2.234 2.257 
1,3,5-trichloro-2,4-dinitrobenzene 

hemihydrate 6284-83-9 2.19 2.452 2.511 2.193 2.222 

4-chloro-3,5-dinitrobenzaldehydeb,c 1930-72-9 2.66 1.660 -np- 1.592 -np- 
1-phenyl-2-propanol 14898-87-4 -0.62 0.115 0.114 0.057 0.053 
4-methylbenzyl alcohol 589-18-4 -0.49 -0.116 -0.149 -0.087 -0.143 
(±)1-phenyl-2-pentanol 705-73-7 0.16 0.490 0.543 0.656 0.701 
2-(p-tolyl)ethylamine 3261-62-9 -0.04 -0.596 -0.504 -0.568 -0.504 
4-methyl benzylamine 104-84-7 -0.01 -0.601 -0.566 -0.632 -0.617 
3-methylbenzyl alcohol 587-03-1 -0.24 -0.116 -0.148 -0.090 -0.145 
3-phenyl-2-propen-1-ol 104-54-1 -0.08 -0.051 -0.030 -0.066 -0.065 
4-tert-buthylbenzyl alcohol 877-65-6 0.48 0.387 0.450 0.371 0.447 
4-methylphenetyl alcohol 699-02-5 -0.26 -0.014 -0.006 0.011 0.003 
1-phenylethylamine 618-36-0 -0.18 -0.485 -0.458 -0.489 -0.479 
2-methyl-1-phenyl-2-propanol 100-86-7 -0.41 0.387 0.417 0.109 0.166 
(±)-1-phenyl-1-propanol 93-54-9 -0.43 0.191 0.179 0.262 0.236 
phenetyl alcohol 60-12-8 -0.59 -0.157 -0.187 -0.145 -0.196 
2-phenyl-1-butanol 89104-46-1 -0.11 0.196 0.226 0.265 0.287 
benzhydrol 91-01-0 0.5 0.684 0.859 0.482 0.674 
benzaldoxime 622-32-2 -0.11 -0.224 -0.298 -0.232 -0.281 
3,5-dimethylaniline 108-69-0 -0.36 -0.039 -0.066 -0.228 -0.233 
4-tert-buthylaniline 769-92-6 0.36 0.305 0.338 0.097 0.178 
4-phenylbutyronitrile 2046-18-6 0.15 0.419 0.399 0.201 0.260 
2,4,6-trimethylaniline 88-05-1 -0.05 0.195 0.192 -0.104 -0.059 
3-phenylpropionitrile 645-59-0 -0.16 0.232 0.186 0.044 0.060 
4-sec-butylaniline 30273-11-1 0.61 0.370 0.390 0.270 0.330 
benzyl cyanide 140-29-4 -0.36 0.039 -0.032 -0.062 -0.097 
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Table 1. Cont… 
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs. a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

2,5-dimethylaniline 95-78-3 -0.33 -0.017 -0.047 -0.239 -0.241 
α-methylbenzyl cyanide 1823-91-2 0.01 0.173 0.142 0.101 0.108 
2-isopropylaniline 643-28-7 0.12 0.179 0.173 -0.030 0.005 
2,6-dimethylaniline 87-62-7 -0.43 0.005 -0.029 -0.259 -0.257 
N-ethylaniline 103-69-5 0.07 -0.207 -0.250 -0.200 -0.221 
2-propylaniline 1821-39-2 0.08 0.178 0.170 0.069 0.091 
N-methylaniline 100-61-8 0.06 -0.452 -0.519 -0.607 -0.659 
2-amino-4-tert-buthylaniline 1199-46-8 0.37 0.383 0.441 0.262 0.368 
2-methoxyaniline 90-04-0 -0.69 -0.332 -0.393 -0.297 -0.336 
3-phenylpyridine 1008-88-4 0.47 0.245 0.324 0.195 0.309 
2-aminobenzyl alcohol 5344-90-1 -1.07 -0.524 -0.528 -0.561 -0.568 
2-benzylpyridine 101-82-6 0.38 0.554 0.649 0.373 0.529 
3,5-di-tert-buthylphenol 1138-52-9 1.64 1.269 1.400 1.161 1.350 
phenyl propargyl sulfide 5651-88-7 0.54 0.483 0.465 0.472 0.530 
4-ethoxyphenol 622-62-8 0.01 0.227 0.159 0.434 0.365 
4-benzylpyridine 2116-65-6 0.63 0.472 0.567 0.383 0.536 
3.4-dimethylphenol 95-65-8 0.12 0.218 0.166 0.193 0.124 
3-tert-buthylphenol 585-34-2 0.74 0.582 0.586 0.527 0.543 
3,5-dimethylphenol 108-68-9 0.11 0.224 0.170 0.179 0.112 
6-tert-buthyl-2,4-dimethylphenol 1879-09-0 1.16 0.935 1.005 0.737 0.855 
3-isopropylphenol 618-45-1 0.61 0.415 0.386 0.418 0.383 
2,5-dimethylphenol 95-87-4 0.14 0.233 0.178 0.153 0.090 
4-hydroxy-3-methoxybenzyl alcohol 498-00-0 -0.7 -0.179 -0.183 0.114 0.091 
3-amino-2-cresol 53222-92-7 -0.55 -0.176 -0.203 -0.293 -0.309 
4-chloro-2-methylaniline 95-69-2 0.35 0.172 0.137 0.277 0.252 
2,4,6- tris(dimethylaminomethyl)phenolc 90-72-2 -0.52 -0.055 0.024 0.647 -np- 
2-fluoroaniline 348-54-9 -0.37 -0.138 -0.198 -0.179 -0.276 
4-aminobenzyl cyanide 3544-25-0 -0.76 -0.212 -0.220 -0.396 -0.341 
3-iodoaniline 626-01-7 0.65 0.128 0.071 0.495 0.547 
3-cinnamonitrile 4360-47-8 0.16 0.098 0.086 0.000 0.018 
3-fluorobenzyl alcohol 456-47-3 -0.39 0.029 -0.015 0.141 0.028 
3-cyanoaniline 2237-30-1 -0.47 -0.298 -0.345 -0.462 -0.458 
4-fluorophenol 371-41-5 0.02 0.189 0.091 0.241 0.076 
2-iodoaniline 615-43-0 0.35 0.131 0.074 0.528 0.582 
3-fluoroaniline 372-19-0 -0.1 -0.137 -0.198 -0.134 -0.238 
4-chloro-2-methylphenol 1570-64-5 0.7 0.444 0.380 0.593 0.511 
2-chloro-4,5-dimethylphenol 1124-04-5 0.69 0.595 0.568 0.762 0.722 
3,5-dimethoxyphenol 500-99-2 -0.09 0.047 -0.019 0.431 0.363 
4-hydroxybenzyl cyanide 14191-95-8 -0.38 0.061 0.024 0.002 -0.004 
4-bromo-2,6-dimethylphenol 2374-05-2 1.16 0.654 0.624 0.755 0.759 
2-bromobenzyl alcohol 18982-54-2 0.1 0.141 0.099 0.352 0.321 
2-chloro-5-methylphenol 615-74-7 0.54 0.436 0.373 0.590 0.510 
2-fluorophenol 367-12-4 0.19 0.188 0.090 0.180 0.024 
4-(dimethylamino)benzaldehyde 100-10-7 0.23 -0.114 -0.183 0.169 0.170 
4-bromophenol 106-41-2 0.68 0.306 0.209 0.510 0.419 
3-chloro-2-methylaniline 95-79-4 0.5 0.173 0.138 0.277 0.252 
3-chloro-4-methylaniline 95-74-9 0.39 0.144 0.113 0.260 0.237 
4-chlorophenethyl alcohol 1875-88-3 0.32 0.212 0.210 0.454 0.423 
4-chlorobenzyl alcohol 873-76-7 0.25 0.107 0.064 0.347 0.271 
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Table 1. Cont…. 
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs. a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

2-bromo-4-methylphenol 6627-55-0 0.6 0.470 0.408 0.657 0.612 
1,3,5-trimethyl-2-nitrobenzene 603-71-4 0.86 0.583 0.576 0.754 0.757 
2-bromophenol 95-56-7 0.33 0.307 0.210 0.493 0.407 
4-hydroxy-3-methoxybenzonitrile 4421-08-3 -0.03 -0.048 -0.079 0.096 0.095 
3-nitrobenzyl alcohol 619-25-0 -0.22 0.012 -0.022 0.358 0.301 
4-methoxybenzonitrile 874-90-8 0.1 -0.119 -0.178 0.064 0.025 
2-hydroxy-4,5-dimethylacetophenone 36436-65-4 0.71 0.660 0.680 0.532 0.584 
2-anisaldehyde 135-02-4 0.15 0.008 -0.079 0.264 0.190 
methyl-4-methylaminobenzoate 18358-63-9 0.31 -0.164 -0.169 -0.175 -0.105 
4-phenoxybenzaldehyde 67-36-7 1.26 0.795 0.945 0.852 1.031 
3-hydroxy-4-methoxybenzaldehyde 621-59-0 -0.14 0.047 -0.008 0.378 0.332 
4-benzoylaniline 1137-41-3 0.68 0.562 0.786 0.332 0.596 
3-anisaldehyde 5991-31-1 0.23 0.012 -0.076 0.306 0.226 
n-propyl cinnamate 7778-83-8 1.23 0.873 0.911 0.987 1.091 
(trans)ethyl cinnamate 103-36-6 0.99 0.686 0.697 0.624 0.713 
hexanophenone 942-92-7 1.19 1.012 1.043 1.225 1.271 
n-butyl cinnamate 538-65-8 1.53 1.058 1.123 1.355 1.473 
4-chlorobenzyl cyanide 140-53-4 0.66 0.407 0.363 0.455 0.448 
(trans)methyl cinnamate 103-26-4 0.58 0.430 0.415 0.267 0.324 
ethyl-4-methoxybenzoate 94-30-4 0.77 0.479 0.441 0.741 0.766 
phenylacetic acid hydrazide 937-39-3 -0.48 -1.093 -0.971 -1.337 -1.160 
2,6-dichlorophenol 87-65-0 0.73 0.647 0.576 0.968 0.879 
benzyl methacrylate 2495-37-6 0.65 0.720 0.723 0.572 0.668 
isoamyl-4-hydroxybenzoate 6521-30-8 1.48 0.984 1.033 1.513 1.589 
benzyl-4-hydroxyphenyl ketoneb,c 2491-32-9 1.07 2.509 -np- 2.100 -np- 
benzyl benzoate 120-51-4 1.45 0.947 1.115 0.948 1.176 
2-methyl-5-nitrophenol 5428-54-6 0.66 0.369 0.311 0.602 0.539 
3-acetoamidophenol 621-42-1 -0.16 0.047 0.039 -0.216 -0.149 
2-nitrobiphenyl 86-00-0 1.3 0.766 0.936 0.831 1.003 
5-chloro-2-hydroxybenzamide 7120-43-6 0.59 0.024 0.062 0.110 0.172 
3-nitrophenol 554-84-7 0.51 0.195 0.104 0.436 0.330 
phenyl-1.3-dialdehyde 626-19-7 0.18 -0.021 -0.093 0.309 0.244 
ethyl-4-bromobenzoate 5798-75-4 1.33 0.815 0.775 0.913 0.969 
2,4-dihydroxyacetophenone 89-84-9 0.25 0.371 0.353 0.340 0.333 
phenyl-4-hydroxybenzoate 17696-62-7 1.37 0.965 1.142 0.974 1.181 
2-hydroxy-4-methoxybenzophenone 131-57-7 1.42 0.966 1.182 1.009 1.255 
benzylidene malononitrile 2700-22-3 0.64 -0.201 -0.086 0.149 0.247 
4-nitrophenyl phenyl ether 620-88-2 1.58 1.029 1.170 1.112 1.282 
resorcinol monobenzoate 136-36-7 1.11 0.947 1.127 0.957 1.167 
4-bromophenyl-3-pyridyl ketoneb,c 14548-45-9 0.82 2.348 -np- 2.444 -np- 
3-nitroacetophenone 121-89-1 0.32 0.543 0.501 0.683 0.664 
3-nitrobenzaldehyde 99-61-6 0.11 0.212 0.131 0.590 0.514 
ethyl phenylcyanoacetate 4553-07-5 -0.02 0.558 0.578 0.657 0.782 
2-nitroanisole 91-23-6 -0.07 0.240 0.145 0.508 0.428 
3-methyl-2-nitrophenol 4920-77-8 0.61 0.373 0.315 0.520 0.470 
2,5-diphenyl-1,4-benzoquinoneb 844-51-9 1.48 0.575 -np- 1.396 1.821 
2-nitrobenzamide 610-15-1 -0.72 -0.107 -0.091 -0.092 -0.036 
methyl-2,5-dichlorobenzoate 2905-69-3 0.81 0.800 0.784 1.234 1.230 
4-methyl-2-nitrophenol 119-33-5 0.57 0.375 0.316 0.570 0.513 
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Table 1. Cont… 
Non-stochastic Stochastic 

Compounds CAS 
Log 

(1/IGC50) 
Obs. a Eq. 1 Eq. 2 Eq. 3 Eq. 4 

2,2',4,4'-tetrahydroxybenzophenone 131-55-5 0.96 1.141 1.402 1.065 1.353 
4-nitrobenzaldehyde 555-16-8 0.2 0.214 0.132 0.585 0.510 
3,5-dichlorosalicylaldehyde 90-60-8 1.55 0.740 0.706 1.262 1.227 
2-(benzylthio)-3-nitropyridine 69212-31-3 1.72 1.088 1.218 1.341 1.631 
ethyl-4-nitrobenzoate 99-77-4 0.71 0.679 0.648 1.026 1.055 
2,4-dichlorobenzaldehyde 874-42-0 1.04 0.683 0.620 1.054 0.991 
2',3',4'-trichloroacetophenone 13608-87-2 1.34 1.349 1.360 1.652 1.676 
2,2'-dihydroxybenzophenone 835-11-0 1.16 1.020 1.225 0.828 1.060 
2-chloromethyl-4-nitrophenol 2973-19-5 0.75 0.604 0.570 1.135 1.105 
α,α,α-trifluoro-p-cresol 402-45-9 0.62 0.852 0.809 0.790 0.691 
dimethylnitroterephthalate 5292-45-5 0.43 0.712 0.839 0.764 0.960 
thioacetanilide 637-53-6 -0.01 0.262 0.233 0.166 0.242 
2-nitroresorcinol 601-89-8 0.66 0.257 0.195 0.479 0.419 
3,5-dibromo-4-hydroxybenzonitrile 1689-84-5 1.16 0.701 0.693 1.073 1.157 
methyl-4-chloro-2-nitrobenzoate 42087-80-9 0.82 0.711 0.702 1.298 1.308 
1-fluoro-2-nitrobenzene 1493-27-2 0.23 0.473 0.372 0.574 0.444 
α,α,α-tetrafluoro-o-toluidine 393-39-5 -0.02 0.897 0.911 0.838 0.788 
benzoyl cyanide 613-90-1 0.31 -0.098 -0.105 0.212 0.173 
2,5-difluoronitrobenzene 364-74-9 0.33 0.766 0.690 0.899 0.761 
4-hydroxy-3-nitrobenzaldehyde 3011-34-5 0.61 0.279 0.226 0.679 0.637 
benzoyl isothiocyanate 532-55-8 0.10 0.429 0.367 0.415 0.484 

aExperimental values (cocentration in mmol/L) taken from [12], bstatistical outliers for Eq. 1, cstatistical outliers 
for Eq. 3, np: Not performed  
 

On the other hand, the stochastic quadratic indices were also employed to develop a QSAR 

model to predict the aquatic toxicity of benzene derivatives. The first obtained model, using 

these atom-based quadratic indices as molecular descriptors, together with its statistical 

parameters, is given below: 

Log (1/IGC50) = -0.870(±0.105) +8.04x10-2(±0.64x10-2)Ksq0L(xE)  

                         +3.65x10-2(±0.50x10-2)Psq1(x) -6.65x10-2(±0.79x10-2)Ksq4L
H(xE)  

                         -0.187(±0.024)Ksq3L
H(xE-H) +0.101(±0.017)Asq14L

H(xE-H)    

                         +0.167(±0.017)Ksq15
H(x) -0.201(±0.021)Gsq9

H(x)                                            (3) 

N = 313                 R2 = 0.745           s = 0.385          F = 127.43            p < 0.0001  

q2 =  0.712            scv = 0.405        

This model showed a square correlation coefficient of 0.745, which is slightly better than the 

one obtained with the first non-stochastic model (R2=0.730); the same behaviour can be 

observed with the value of the standard deviation. In the development of the first stochastic 

model (Eq. 3), seven compounds (020, 182, 210, 215, 279, 335 and 354) were detected as 

statistical outliers. The residual values of these compounds, together with their chemical 

names, are also shown in Table 2. The removal of the above-noted compounds and subsequent 
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reanalysis lead to Eq. 4, which exhibits better statistics. This new model obtained with 

stochastic atom-based quadratic indices, together with its statistical parameters, is given below: 

Log (1/IGC50) = -1.337(±0.108) +7.09x10-2(±0.58x10-2)Ksq0L(xE)  

                          +5.07x10-2(±0.49x10-2)Psq1(x) -5.69x10-2(±0.71x10-2)Ksq4L
H(xE)  

                         -0.175(±0.021)Ksq3L
H(xE-H) +9.69x10-2(±1.51x10-2)Asq14L

H(xE-H)    

                         +0.144(±0.015)Ksq15
H(x) -0.178(±0.019)Gsq9

H(x)                                             (4) 

N = 306              R2 = 0.806            s = 0.329            F = 176.99           p < 0.0001  

q2 =  0.791          scv = 0.337           R2
pred = 0.742 

This improved model explains more than the 80% of the experimental values of aquatic 

toxicicty, with a standard deviation 14.5% lower than the one of the former model obtained 

with the entire dataset. The predictability and stability of the new obtained models, using 

stochastic linear indices (Eqs. 3 and 4) for data variation, were also carried out here by means 

of LOO cross-validation. The second stochastic model (Eq. 4) showed a good value of square 

correlation coefficient q2=0.791, which is 11.09% greater than the value of q2 of the first 

stochastic model (0.712). Moreover, the standard deviation of the LOO-CV was improved in 

16.79% with regard to the one of the previously obtained model (Eq. 3). The  value of q2 

(0.791) can be considered as a proof of the high-predictive ability of the model. However, the 

external validation is the only way to establish the real predictivity of the models [59]; this 

topic will be disscussed in the next subsection. 

 

Table 2. Statistical outliers and residual values from Eqs. 1 and 3 
Compound Residual  value 

Non-stochastic model (Eq. 1) 
n-amylbenzene 1.006 
4-ethylbiphenyl 1.139 
4-hexylresorcinol 1.066 
pentafluoroaniline -0.964 
4-chloro-3,5-dinitrobenzaldehyde 0.999 
benzyl-4-hydroxyphenyl ketone -1.439 
4-bromophenyl-3-pyridyl ketone -1.528 
2,5-diphenyl-1,4-benzoquinone 0.905 

Stochastic model (Eq. 3) 
4-ethylbiphenyl 1.349 
phenyl isothiocyanate 1.209 
pentafluoronitrobenzene 0.981 
4-chloro-3,5-dinitrobenzaldehyde 1.068 
2,4,6-tris(dimethylaminomethyl)phenol -1.167 
benzyl-4-hydroxyphenyl ketone -1.030 
4-bromophenyl-3-pyridyl ketone -1.624 
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3.3. Validation of  the toxicity-based QSAR models  

All toxicity-related QSARs require validation to ensure they are capable of making accurate 

predictions of toxicity for compounds not included in the training set. The best means of 

validation is by using of an external data set. This is the most demanding method because it 

requires additional testing and attention to the selection of compounds for validation [12]. 

Efforts should be made to ensure chemical diversity within the training set, and the chemicals 

in the validation set should be similar to the ones in the training set [59]. The training 

chemicals should represent the depth and breadth of all existing chemicals within the domain. 

The chemicals selected for the test set should also represent the distribution of existing 

chemicals within the training domain. In this work, CA was used to assess both diversity for 

training and representation for validation. 

The principal importance of the horizontal validation is to prove the predictability and the 

robustness of the model. An external set of 79 benzene derivatives was used as a  test set to 

judge the predictability of the best model obtained with the non-stochastic quadratic indices 

(Eq. 2). Therefore, the determination coefficient for the test set (R2
pred) with model 2 was of 

0.745; the good prediction for the tested compounds confirms the significance of the selected 

molecular descriptors and the model based on them. Two compounds (pentafluorobenzyl 

alcohol, Res=3.049 and 6-phenyl-1-hexanol, Res=1.022) were detected as ouliers. The 

predicted values for the compounds of the prediction set, using the non-stochastic linear 

indices (Eq. 2) are shown in Table 3.  

Likewise, the real predictive power of the best stochastic quadratic indices’ model (Eq. 4) was 

validated by the same external test set of 79 compounds, achieving a value of R2
pred of 0.742, 

with two compounds as outliers (pentafluorobenzyl alcohol, Res=0.832 and 2,4,5-

trimethoxybenzaldehyde, Res=0.771). The obtained values for the test sets, using stochastic 

linear indices (Eq. 4), are also shown in Table 3. 

Now we shall give a little discussion about the presence of outliers in the developed QSAR 

models. Outliers are useful in QSAR development as they assist in establishing the chemical 

domain of the model. Outliers from a QSAR are compounds that do not fit the model, or that 

are poorly predicted by it [60]. By the use of several methods, it is possible for us to highlight 

outliers including, at the most basic level, the identification of those compounds with 

significantly high standard residuals from regression-based techniques by use of several 

methods. In this work, outliers’ detection was performed by using the following standard 

statistical tests: residual, standardized residual, Mahalanobis distance, deleted residual and 
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Cooks’ distance [56, 58]. After their identification, outliers were removed from the data set, 

and the QSAR recalculated (as we described in the previous section) to develop new models.  

Table 3. Experimental and predicted values [Log (1/IGC50)] for the test set.  
Non-

stochastic Stochastic 
Compounds CAS 

Log 
(1/IGC50) 

Obs. a Eq. 2 Eq. 4 

n-butylbenzene 104-51-8 1.25 0.557 0.606 
isopropylbenzene 98-82-8 0.69 0.332 0.245 
6-phenyl-1-hexanol 2430-16-2 0.87 -outlier- 0.729 
3-phenyl-1-propanol 122-97-4 -0.21 0.025 0.010 
(±)-2-phenyl-2-butanol 1565-75-9 0.06 0.518 0.459 
1,1-diphenyl-2-propanol 29338-49-6 0.75 1.282 0.849 
3-aminobenzyl alcohol 1877-77-6 -1.13 -0.468 -0.548 
4-butoxyaniline 4344-55-2 0.61 0.490 0.717 
4-methylaniline 106-49-0 -0.05 -0.244 -0.433 
3-methylaniline 108-44-1 0.28 -0.238 -0.436 
4-butylaniline 104-13-2 1.07 0.402 0.401 
2-ethylaniline 578-54-1 -0.22 0.008 -0.203 
4-methoxyphenol 150-76-5 -0.14 -0.006 0.067 
4-methylanisole 104-93-8 0.25 0.074 0.142 
2,3,5-trimethylphenol 697-82-5 0.36 0.400 0.300 
phenetole 103-73-1 -0.14 0.206 0.223 
3-ethylphenol 620-17-7 0.29 0.196 0.183 
4-chloroaniline 106-47-8 0.05 0.061 0.061 
4-chloroanisole 623-12-1 0.6 0.400 0.503 
1,3-dihydroxybenzene 108-46-3 -0.65 -0.116 -0.160 
4-chlorobenzylamine 104-86-9 0.16 -0.220 -0.142 
2-nitrotoluene 88-72-2 0.26 0.532 0.384 
3-ethoxy-4-hydroxybenzaldehyde 121-32-4 0.02 0.561 0.691 
3-methoxy-4-hydroxybenzaldehyde 121-33-5 -0.03 0.249 0.332 
4-bromo-6-chloro-o-cresol 7530-27-0 1.28 1.120 1.178 
1,2-dichlorobenzene 95-50-1 0.53 0.760 0.687 
4-chlorobenzaldehyde 104-88-1 0.4 0.459 0.478 
1,2,4-trichlorobenzene 120-82-1 1.08 1.264 1.218 
4-chloro-2-nitrotoluene 89-59-8 0.82 1.034 0.941 
3-nitrobenzonitrile 619-24-9 0.45 0.664 0.278 
2-nitroaniline 88-74-4 0.08 0.292 0.024 
2,3,4,6-tetrachlorophenol 58-90-2 2.18 1.855 2.052 
1-fluoro-4-nitrobenzene 350-46-9 0.1 0.706 0.554 
3,5-dibromo-salicylaldehyde 90-59-5 1.65 1.248 1.402 
4-chloro-3-nitrophenol 610-78-6 1.27 0.979 0.901 
1-chloro-4-nitrobenzene 100-00-5 0.43 0.863 0.757 
2,5-dichloronitrobenzene 89-61-2 1.13 1.387 1.225 
2,4-dichloronitrobenzene 611-06-3 0.99 1.365 1.246 
1,2,3-trifluoro-4-nitrobenzene 771-69-7 1.89 1.417 0.980 
1-bromo-2.4-dinitrobenzene 584-48-5 2.31 1.563 1.309 
2,4-dinitrophenol   51-28-5 1.06 1.134 0.952 
2,6-dinitrophenol   573-56-8 0.83 1.145 0.886 
1-chloro-2,4-dinitrobenzene 97-00-7 2.16 1.486 1.315 
2,4-dinitro-1-fluorobenzene 70-34-8 1.71 1.328 1.081 
4-isopropylbenzyl alcohol 536-60-7 0.18 0.388 0.445 
2-methylbenzyl alcohol 89-95-2 -0.43 -0.147 -0.147 
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Table 3. Cont … 
Non-

stochastic Stochastic 
Compounds CAS 

Log 
(1/IGC50) 

Obs. a Eq. 2 Eq. 4 

N-methylphenethylamine 589-08-2 -0.41 -0.519 -0.659 
β-methylphenethylamine 582-22-9 -0.28 -0.478 -0.443 
(±)-1-phenyl-1-butanol 22135-49-5 -0.09 0.393 0.522 
2-phenyl-1-propanol 1123-85-9 -0.4 0.016 0.029 
2-phenyl-2-propanol 617-94-7 -0.57 0.266 0.129 
2.4-dimethylaniline 95-68-1 -0.29 -0.054 -0.242 
2.3-dimethylaniline 87-59-2 -0.43 -0.048 -0.238 
4-buthoxyphenol 122-94-1 0.7 0.586 1.050 
2-phenylpyridine 1008-89-5 0.27 0.406 0.310 
4-isopropylphenol 99-89-8 0.47 0.381 0.384 
2.3-dimethylphenol 526-75-0 0.12 0.176 0.095 
2-isopropylphenol 88-69-7 0.61 0.398 0.336 
2-methoxy-4-propenylphenol 97-54-1 0.75 0.441 0.499 
4-chloro-3-ethylphenol 14143-32-9 1.08 0.582 0.772 
3-chloro-2-methylaniline 87-60-5 0.38 0.138 0.224 
3-chlorobenzyl alcohol 873-63-2 0.15 0.064 0.270 
4-bromophenyl acetonitrile 16532-79-9 0.6 0.396 0.441 
4-chlororesorcinol 95-88-5 0.13 0.209 0.507 
4-biphenylcarboxaldehyde 3218-36-8 1.12 0.724 0.688 
2.4.5-trimethoxybenzaldehyde 4460-86-0 -0.1 0.106 -outlier- 
3-hydroxybenzaldehyde 100-83-4 0.08 -0.116 0.047 
4-benzoylphenol 1137-42-4 1.02 1.007 0.914 
4-cyanobenzamide 3034-34-2 -0.38 -0.409 -0.597 
3-chlorobenzophenone 1016-78-0 1.55 1.325 1.356 
phenyl benzoate 93-99-2 1.35 1.085 1.053 
2-nitrobenzaldehyde 552-89-6 0.17 0.124 0.498 
5-methyl-2-nitrophenol 700-38-9 0.59 0.319 0.515 
methyl-4-nitrobenzoate 619-50-1 0.39 0.366 0.706 
pentafluorobenzyl alcohol 440-60-8 -0.2 -outlier- -outlier- 
3-hydroxy-4-nitrobenzaldehyde 704-13-2 0.27 0.233 0.633 
2.5-dibromonitrobenzene 3460-18-2 1.37 0.911 1.213 
4.5-difluoro-2-nitroaniline 78056-39-0 0.75 0.532 0.775 
2.4-dibromo-6-nitroaniline 827-23-6 1.62 0.800 1.725 
aExperimental values (cocentration in mmol/L) taken from [12] 
 

There are several potential reasons for a chemical to be an outlier from a QSAR. Usually, such 

compounds have been recognized as acting by a different mechanism of action from the other 

chemicals, which are well modeled by the QSAR. Examples of outliers from toxicological 

QSARs abound for all endpoints and have actually been extremely useful in their development. 

In the 1980s and more recently, the analysis of outliers proved to be the spur for the further 

analysis and identification of mechanisms of action [61]. 

A closer analysis of the outlier compounds showed that two compounds, 335 and 354  (benzyl-

4-hydroxyphenyl ketone and 4-bromophenyl-3-pyridyl ketone, respectively), were detected as 

outliers for both models (Eqs. 1 and 3); adittionally, compound 306 (2,5-diphenyl-1,4-
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benzoquinone) was detected as outlier by the Eq. 1; all three compounds belong to cluster 

number nine. That is a logical result, because this cluster is composed of only these three 

compounds, so the structures of these three compounds are markedly different from the rest of 

the structures in the whole data set. Taking this into account, we can expect an outlier behavior 

for these compounds, as was shown in the development of the models. For that reason these 

compounds were included only in the training set. On the other hand, compounds 020, 074, 

182 and 215 (4-ethylbiphenyl, 4-hexylresorcinol, phenyl isothiocyanate and 4-chloro-3,5-

dinitrobenzaldehyde) were also detected as outliers in previous reports [2, 12, 42]. Other 

outliers without any apparent structural pattern were detected (see Table 1).  

3.4. Comparison with other approaches  

In this subsection, we proceed to develop a comparison between the ability of non-stochastic 

and stochastic atom-based quadratic indices for the prediction of aquatic toxicity of benzene 

derivatives against T. pyriformis. In a recent publication [42], we developed several QSAR 

models using five kinds of bidimentional (2D) descriptors, implemented in the Dragon 

software [62]; these descriptors were: Topological, BCUT, Gálvez´s topological charge 

indices, 2D Autocorrelations and Molecular Walk Counts. The corresponding models were 

developed with the same data set as was used in the development of the former models,  

obtained with  non-stochastic and stochastic atom-based quadratic indices (Eqs. 1 and 3, 

respectively). Aditionally, we compare the models obtained here with those previously 

obtained with atom-based linear indices [42]. The statistical parameters of the previously 

obtained models are shown in Table 4. 

The comparison was based mainly on the quality of the statistical parameters of the regression. 

Specifically, the results of the present approach (atom-based non stochastic quadratic indices) 

showed the highest square correlation coefficient value of 0.745 with stochastic quadratic 

indices, while the model obtained with non-stochastic quadratic indices achieved a value of R2 

of 0.730. These results are similar-to-better than those achieved with stochastic (R2=0.733) and 

non-stochastic (R2=0.721) linear indices to predict aquatic toxity of benzene derivatives. The 

achieved values of R2, for the QSAR models developed with Dragon´s 2D molecular 

descriptors, were between 0.516 and 0.716; the model obtained with molecular walk count  

descriptors was not considered in the comparison because of the poor shown behavior. Similar 

behaviour was achieved in the values of standard deviation, s=0.385 and s=0.396, for 

stochastic and non-stochastic quadratic indices´ models, correspondingly. The values of 

standard deviation, for the reported models with the 2D Dragons´ MDs, were between 0.406 

and 0.530. 



 21

On the oder hand, the models were also compared according to their result in the LOO cross-

validation procedure. In particular, the atom-based quadratic models achieved the best values 

of press statistics, q2 and scv. As it can be seen, our models have statistical parameters better 

than the models obtained with Dragon’s molecular descriptors. The model obtained with 

stochastic quadratic indices showed the highest value of q2=0.712 and the lowest value of 

scv=0.405; the model obtained with non-stochastic quadratic indices had a similar behavior: 

q2=0.697 and scv=0.415. These results are quite similar to the ones achieved with stochastic 

(q2=0.704 and scv=0.411) and non-stochastic (q2=0.687 and scv=0.425) linear indices. The 

values of these statistical parameters for the other models are for q2 between 0.682 and 0.478, 

and for scv between 0.423 and 0.545. All these results are summarized in Table 3, where a 

detailed comparison can be more easily performed. Finally, we can say that, for the entire data 

set the model developed with stochastic indices achieved results slightly better than the model 

developed with non-stochastic indices, as well as that the models obtained with quadratic 

indices were also rather better than the one previously obtained with linear indices, 

correspondingly. In addition, the models obtained with atom-based quadratic and linear indices 

were superior to those developed with 2D Dragon´s MDs to describe the aquatic toxicity. 

 
Table 4. Comparison between the QSAR models obtained using atom-based quadratic indices 
with other approaches previously reported [42] to predict aquatic toxicity. 

index N R2 s F q2 scv 
Non-Stochastic Quadratic Indices  313 0.730 0.396 118.04 0.697 0.415 
Stochastic Quadratic Indices  313 0.745 0.385 127.43 0.712 0.405 
Non-Stochastic Linear Indicesa 313 0.721 0.403 131.79 0.687 0.421 
Stochastic Linear Indicesa 313 0.733 0.394 139.94 0.704 0.411 
2D autocorrelationsa 313 0.609 0.476 79.54 0.585 0.486 
BCUTa 313 0.690 0.424 113.56 0.675 0.431 
Gálvez topological charge indicesa 313 0.516 0.530 54.30 0.478 0.545 
Topological descriptorsa 313 0.716 0.406 128.70 0.682 0.423 

aQSAR Model reported in a previous work [42]. 
 

4. Conclusions 

In recent publications, it has been recognized the growing necessity of developing more 

reliable QSAR/QSTR models to assess drug discovery and chemical environmental risk [17, 

63, 64]. Therefore, it is necessary the continuos development of predictive 

regression/classification-based models, in order to predict aquatic toxicity by means of QSAR. 

Consequently, we have developed fairly good MLR models that could permit us to predict, by 

fast “in silico” screening, the aquatic toxicity of benzenes against T. pyriformis. 

In the current study, the use of non-hierarchical cluster analysis permits us to split 

carefully the data into training and validation sets, guaranteeing enough molecular diversity in 
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each subset. The obtained models, with non-stochastic and stochastic atom-based quadratic 

indices, were statistically significant and robust in terms of the R2, s, q2 and scv values. The best 

model was developed with stochastic quadratic indices; it showed good values of R2 = 0.806 

and q2 = 0.791. In the impairment of the population growth of T. pyriformis with our two 

models, the capability of predicting the aquatic toxicity of benzene derivatives was assessed by 

the good values of predictive R2
pred (0.745 and 0.742 for non-stochastic and stochastic model, 

respectively), achieved for the test set. The results achieved with the stochastic model showed 

results slightly better than the ones with the non-stochastic model, but both models can be 

efficiently used to predict the aquatic toxicity of benzene derivatives. The comparison with 

other approaches, previously reported [42], assesses a good behavior of our method.  

Finally, those models obtained in the current work are not ideal because the data set used here, 

although of good quality and reliable, is limited. Therefore, based on increasing data the 

learning/modeling will need to be an ongoing, iterative process in which the models will be 

continuously refined. However, the method proposed here (atom-based quadratic indices) 

could be a substitute for costly and time-consuming experiments to determine toxicity. 
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