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Abstract: This paper proposes a Deep Neural Network(DNN) based model to numerically solve a 1

parabolic-parabolic chemotaxis model with Lokta-Volterra type logistic sources in heterogeneous en- 2

vironments and study the convergence of numerical solutions to corresponding theoretical solutions 3

and find a priori estimates of predictor error. The advantages of deep learning-based methods on 4

numerical methods include solutions obtained that are not restricted to the grid points and we can 5

predict the future dynamical behavior of the system. 6

Keywords: Deep Learning; Chemotaxis; Numerical Solution; Convergence 7

1. Introduction 8

Neural nets, the building blocks of deep learning-based models are good approx- 9

imation functions according to the Universal Approximation Theorem by X. Li in [18]. 10

Deep learning has been used recently to approximate solutions of PDEs see [7,9–11] and 11

references therein. We refer to [6] for recent work on the deep learning-based numerical 12

study of chemotaxis models. 13

This paper introduces a Deep Neural Network (DNN) based model that can be used 14

to solve numerically the 1-D chemotaxis model with Lokta-Volterra type logistic sources( 15

see [1,2,12–17,19,20] and reference therein for works chemotaxis models ) and study the 16

convergence of numerical solutions to corresponding theoretical solutions and find apriori 17

estimates of predictor error. 18


ut = uxx − χ(uvx)x + u

(
a0(t, x)− a1(t, x)u− a2(t, x)

∫
Ω u
)

, x ∈ (−1, 1)

τvt = vx − λv + µu, x ∈ (−1, 1)
ux(·, 0) = vx(·, 0) = 0

(1)

2. Materials and Methods 19

Our method consists of a DNN architecture, which is the composition of multiple 20

layers of Neural Networks(NN). A single layer of NN is a composition of an affine function 21

with a non-linear activation function. Each layer of DNN takes inputs from previous layers 22

and progressively refines them. The layers are trained by algorithms that minimize errors 23

and improve accuracy. Deep learning has been used recently in a variety of fields [3–5,7–11] 24

including to approximate solutions of PDEs or to learn nonlinear operators [7,9–11]. 25
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Baseline DNN model and architecture: 26

In this section, the DNN approximation function will be denoted by f NN(t, x; m, w, b)
and we suppose that our DNN has L layers. That means our baseline DNN model has an
input layer, L− 1 hidden layers, and an output layer. The input layer takes (t, x) as input
and the final layer gives f NN(t, x; m, w, b) as the output. We denote the relation between
the l − th layer and (l + 1)− th layer (l = 1, 2, · · · , L− 1) as

z(l+1)
j =

ml

∑
i=1

w(l+1)
ij σl(zl

i) + bl+1
j

were m = (m0, m1, m2, · · · , mL−1), w = wk
ij

mk−1,mk ,L

i,j,k=1
, b = bk

j
mk ,L

j=1,k=1
and 27

• zl
i : the i− th neuron in the l − th layer 28

• σl : the activation in the l − th layer 29

• w(l+1)
ji : the weight between the i− th neuron in the l − th layer and the j− th neuron 30

in the (l + 1)− th layer 31

• b(l+1)
j : the bias of the j− th neuron in the (l + 1)− th layer 32

• ml : the number of neurons in the l − th layer 33

and the relation between the input layer and the first-hidden layer is expressed as follows:

z1
j =

2

∑
i=1

wjiz0
i + b1

j

where (z0
1, z0

2) = (t, x). 34
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Figure 1. An Example of DNN with L=4.

Pytorch, Adam optimization algorithm, and relu activation functions can be used to 35

build and train our DNN model. 36

Input data: 37

To approximate the solution u(t, ·; 0, u0) of our system by the DNN numerical solution,
we need the data of grid points for each variable domain. We use random sampling to
pick grid points within the domain. More precisely,we choose the grid points for training
uniformly as follows:

{(ti, xj)i,j) ∈ [0, T]× [−1, 1] with ∆t = 0.01, ∆x = 0.02}

For the initial condition, we use the grids

{(t = 0, xj)i,j)}
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and for the boundary conditions, we use the grids

{(ti, x = 1 or − 1)i,j)}

Loss Function: 38

We use the Adam optimizer to find the optimal parameteres w(l+1)
ji and b(l+1)

j to 39

minimize the loss functions using the back-propagation. 40

The governing equation of the loss function is defined as follows: 41

Loss1
GE =

∫ T

0

∫ 1

−1
|A1(t, x)− B1(t, x)− C1(t, x)|2dxdt

A1(t, x) = f NN
1 (t, x; m, w, b)t − f NN

1 (t, x; m, w, b)xx, 42

B1(t, x) = χ( f NN
1 (t, x; m, w, b) f NN

2 (t, x; m, w, b)x)x, 43

and 44

C1(t, x)

= f NN
1 (t, x; m, w, b)

(
a0(t, x)− a1(t, x) f NN

1 (t, x; m, w, b)− a2(t, x)
∫ 1

−1
f NN
1 (t, x; m, w, b)dx

)

Loss2
GE =

∫ T

0

∫ 1

−1
|A2(t, x)− B2(t, x)|2dxdt

A2(t, x) = f NN
2 (t, x; m, w, b)t − f NN

2 (t, x; m, w, b)xx and B2(t, x) = λ f NN
2 (t, x; m, w, b) + 45

ν f NN
1 (t, x; m, w, b) 46

We define the general equations LossGE as

LossGE = Loss1
GE + Loss2

GE

We define the loss of the initial conditions as:

LossIC =
∫ 1

−1

(
| f NN

1 (0, x; m, w, b)− u0(x)|2 + | f NN
2 (0, x; m, w, b)− v0(x)|2

)
dx

≈ 1
N

N

∑
j=1

(
| f NN

1 (0, xj; m, w, b)− u0(xj)|2 + | f NN
2 (0, xj; m, w, b)− v0(xj)|2

)
We define the boundary condition loss as : 47

LossBC =
∫ T

0

(
| f NN

1 (t,−1; m, w, b)t|2 + | f NN
1 (t, 1; m, w, b)t|2

)
dt

+
∫ T

0

(
| f NN

2 (0,−1; m, w, b)t|2 + | f NN
2 (0, 1; m, w, b)t|2

)
dt

≈ 1
N

N

∑
i=1

(
| f NN

1 (ti,−1; m, w, b)t|2 + | f NN
1 (ti, 1; m, w, b)t|2

)
+

1
N

N

∑
i=1

(
| f NN

2 (ti,−1; m, w, b)t|2 + | f NN
2 (ti, 1; m, w, b)t|2|

)
Finally, we define the total loss as: 48

LossTotal = LossGE + LossIC + LossBC.



Version May 15, 2023 submitted to Journal Not Specified 4 of 5

3. Results 49

First, we address the question of the convergence of the proposed numerical scheme 50

in the sense that there exists a sequence of solutions that makes the total loss term converge 51

to zero if a classical solution of (1) exists. Note that inft,x a(t, x) > 0 implies the existence of 52

global solutions for system (1). 53

Theorem 1. Assume inft,x a1(t, x) > 0, given (u0, v0) ∈ C(Ω̄)×W1,∞(Ω) with u0, v0 ≥ 0 and 54

let (u(·, 0; u0, v0), v(·, 0; u0, v0)) be the classical solution of system (1) with initial (u0, v0).Then, 55

there exists {m[j], w[j], b[j]} such that a sequence of DNN solutions with m[j] nodes, denoted by 56

{ f j(t, x) = ( f NN
1 (t, x; m[j], w[j], b[j]), f NN

2 (t, x; m[j], w[j], b[j]))} satisfies 57

LossTotal( f j)→ 0 as j→ ∞. (2)

Comment: Theorem 2 states that there exist weights of the neural network that reduces 58

the error function as much as we want. However, this does not guarantee that the neural 59

network could converge to the solution of the original equation when the loss function 60

converges to zero. We next would like to address the stability of the scheme in the sense 61

that the neural network architecture converges to an analytic solution of (1) in a suitable 62

function space (to be determined) when the weights of the neural networks minimize the 63

loss LossTotal . 64

Theorem 2. Let ε > 0, {m[j], w[j], b[j]}∞
j=1 be a sequence miminizing LossTotal( f j). Under 65

suitable non-explicit conditions on the model coefficients, the proposed scheme is stable in the sense 66

the LossTotal( f j)→ 0 as j→ ∞ implies 67

‖ f j(·, ·; m[j], w[j], b[j])− (u(·, 0; u0, v0), v(·, 0; u0, v0))‖L∞([0,T]:L2([−1,1])) ≤ C(u0, v0, ai, σ, λ, ν)ε2.
(3)

4. Discussion 68

In this work, we propose a deep-learning-based model to approximate the numerical 69

solution of 1-D chemotaxis models and study the convergence and stability of the numerical 70

scheme. Our next step is to solve numerically our model using pytorch and compare the 71

results with recent numerical methods. The advantages of deep learning-based methods 72

on numerical methods include solutions obtained that are not restricted to the grid points 73

and we can predict the future dynamical behavior of the system. A natural extension is to 74

use Convolution Neural networks or Sequential Deep Learning models. 75
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