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Abstract: In this paper, an eco-epidemiological model of prey refuge and prey harvesting in infected
prey populations is discussed. The predator consumes susceptible and infected prey at different
rates in the form of a ratio-dependent type of interaction. The existence, positive invariance, and
boundedness of the system are addressed. We have also established the stability of equilibrium
points. The occurrence of Hopf-bifurcation is examined by analyzing the distribution of eigenvalues
at the interior equilibrium point. Finally, to support the primary analytical findings, some numerical
simulations were also given.

Keywords: Eco-epidemiological model, Ratio-dependent, Prey refuge and harvesting, Stability,
Hopf-bifurcation

1. Introduction

Eco-epidemiological models are used to determine the interaction between predator
and prey with infection in one population or in a susceptible and infected prey popula-
tion. Mathematical models have become major tools in analyzing the spread and control
of diseases. Lotka [1] and Volterra [2] Predator-prey models, in the form of a coupled
system of non-linear differential equations, can be considered the first breakthrough in
modern mathematical ecology. In these models, the main concern is to study equilibrium
points, their stability analysis, periodic solutions, bifurcations, chaotic behavior, etc. A
mathematical representation of interactions between predator-prey, called "functional re-
sponse," is one of the key components of predator-prey population modelling. There are
several different types of functional responses, including the Holling type I-III [3], [4];
Hassell-Varley type; Beddington-DeAngelis type; Crowley-Martin type; and the recently
well-known ratio-dependent type by Arditi and Ginzburg [5]. The prey’s predation rate
is assumed to be a function of the number of prey a predator consumes per unit of time.
Many authors started to examine the predator-prey model with infection in either the
population of prey or the predator or both populations [6]. The two types of disease in
the predator population model with the linear functional response as well as the type II of
Holling function were examined by Kadhim and Azhar [7]. The non-linear investigation
of the predator-prey model with distinct effects was investigated in [8]. In [9] discussed
the global and local stability analyses and also investigated the analysis of bifurcation for
the ratio-dependent intra-guild predation model. The prey-predator food web model with
the type II of Holling function was examined by Magudeeswaran et al. [10]. Commercial
exploitation of ecological resources to meet the growing needs of society has been a topic of
much concern for ecologists, bio-economists and natural resource managers. Harvesting is
commonly practised in fisheries, forestry and in wildlife management. These investigations
revealed very rich and interesting dynamics such as stability of equilibria, existence of
Hopf bifurcation, limit cycles, homoclinic loops, Bogdanov-Takens bifurcation, and even
catastrophe. In eco-epidemiology, we study predator-prey models along with disease
dynamics. We are interested in investigating the dynamics of the predator-prey model
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using this functional response. A lot of research has been done on the dynamic behavior of
ratio-dependent eco-epidemiological models. Several authors investigated the non-linear
behavior of the infected predator prey model with various functional responses [11]. To
the best of our knowledge, no researchers have studied the three species of prey-predator
models that incorporate species interaction, as in the function of ratio-dependent disease
in the prey populations. In this paper, we investigate the dynamics of a ratio-dependent
eco-epidemiological model with prey refuge and prey harvesting. Here, we have studied
the boundedness, positivity, local and global stability of the non-equilibrium points of this
system.

2. The Mathematical Model Formation

The following set of nonlinear differential equations is used in an eco-epidemiological
model with a refuge and prey harvesting.

dU
dT = RU(1− U+V

K )− α1UV
U+V − H1E1U,

dV
dT = cα1UV

U+V − d1V − b1(1−m)VW
a1W+(1−m)V − H2E2V,

dW
dT = −d2W + cb1(1−m)VW

a1W+(1−m)V ,

 (1)

with non-negative conditions U(0) ≥ 0, V(0) ≥ 0 and W(0) ≥ 0.

Table 1. Environmental representation of the system

Parameters Environmental representation

U,V,W Susceptible Prey, infected prey, predator
R Prey growth rate
K Carrying capacity of the environment
a1 The constant for half-saturation
α1 Rate of predation on susceptible prey
b1 Predation rate of prey with infected
c Prey to preadator conversion rate

d1, d2 Infected prey death rate, Predator population death rate
m Refuge of prey

H1, H2 Prey’s catchability coefficient
E Harvesting effort

It is convient to scale the variable to minimize the amount of variables of the system
(1) as u = U

K , v = V
K , w = a1W

K and to consider the non-dimensional time t = RT the
transforms leads to non-dimensional system. Now the system (1) becomes,

du
dt = u(1− u− v)− αuv

u+v − h1u, u(0) ≥ 0,
dv
dt = cαuv

u+v − dv− b(1−m)vw
w+(1−m)v − h2v, v(0) ≥ 0,

dw
dt = −δw + cb(1−m)vw

w+(1−m)v , w(0) ≥ 0,

 (2)

where α = α1
R , b = b1

R , h1 = H1E1
R , d = d1

R , h2 = H2E2
R , δ = d2

R .

3. POSITIVITY AND BOUNDEDNESS OF THE SOLUTION
3.1. Positive Invariance

Let X ≡ (u(t), v(t), w(t))T and E(X) = (E1(X), E2(X), E3(X))T , where

E1(X) = u(1− u− v)− αuv
u + v

− h1u, E2(X) =
cαuv
u + v

− dv− b(1−m)vw
w + (1−m)v

− h2v,

E3(X) = −δw +
cb(1−m)vw
w + (1−m)v

.
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Then, the system (2) can be written as dX
dt = E(X) where E : C+→ R3

+ with X(0) = X0
∈ R3

+. Here, Ej∈C∞(R) for j = 1, 2, 3. Thus, the function E is Lipschitzian and continuous
onR3

+. The system (2) has positive initial conditions it can shown that these solutions exist.
Hence, (2) is an invariant in the regionR3

+ .

3.2. Boundedness

Theorem 1. Each and every one of the model (2) solutions is non-negative and uniformly bounded.

Proof: Let (u(t), v(t), w(t)) be any solutions of the model (2) with positive initial condi-
tions. Since,

du
dt ≤ u(1− u).

From the above inequality we have, lim supt→∞ u(t) ≤ 1. Let η = u + v + w.

dη

dt
=u(1− u)− uv− (1− c)αuv

u + v
− h1u− dv− (1− c)b(1−m)vw

w + (1−m)v
− h2v− δw,

≤u(1− u)− h1u− (d + h2)v− δw (since c < 1),

≤ r
4
− h1u− (d + h2)v− δw (since Max {u(1− u)} = r

4
),

≤ r
4
− γη, where γ = min {h1, d + h2, δ}.

Hence, we have dη
dt + γη ≤ r

4 . Using the theorem of differential inequality, we obtain

0 < η ≤ r
4γ (1− exp−γt

) + η (u0, vo, w0) exp−γt.

For t→∞, we have 0 < η ≤ r
4γ . Hence, all the solutions of the system (2) starting inR3

+ for
any ∈> 0 are confined in the region Ω = {(u, v, w) ∈ R3

+ : u + v + w ≤ r
4γ+ ∈}.

4. Existence of Equilibria

The model (2) has the below equilibrium points:

1. E1 (1, 0, 0) is the boundary equilibrium point.
2. E2 (ū, v̄, 0) is the predator-free equilibrium point, exists if α + h1 > 1 and d+h2

α < c <
d+h2

α+h1−1 . When condition holds, ū, v̄ are given by

ū = (d+h2)
c2α

(c(1− h1 − α) + d + h2), v̄ = (cα−(d+h2))
c2α

(c(1− h1 − α) + d + h2).

3. The endemic equilibrium point E∗(u∗, v∗, w∗), exists if the following two conditions
are satisfied: (i) A

α+h1
< bc2 < A

α+h1−1 and (ii)cb > δ, where A = (d + h2)cb + b(1−
m)(cb− δ). Furthermore, u∗, v∗, w∗ are given by

u∗ =
A

c4α2b2 (c
2αb− α(c2b(α + h1)− A)), v∗ =

c2αb− A
c4α2b2 (c2αb− α(c2b(α + h1)− A)),

w∗ =
(A− (d + h2)cb)(c2αb− A)

bδc4α2b2 (c2αb− α(c2b(α + h1)− A)).

The constant of refuge should lies in the interval

1− c(c(α+h1)−(d+h2))
cb−δ < m < 1− c(c(α+h1−1)−(d+h2))

cb−δ . (3)
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5. Local stability analysis

We want to calculate the Jacobian matrix for local stability analysis around different
equilibrium points. The Jacobian matrix at an arbitrary point (u, v, w) is given by

J(E) =


1− 2u− v− αv2

(u+v)2 − h1 −u− αv2

(u+v)2 0
cαv2

(u+v)2
cαu2

(u+v)2 − d− h2 − b(1−m)w2

(w+(1−m)v)2 − b(1−m)2v2

(w+(1−m)v)2

0 bc(1−m)w2

(w+(1−m)v)2 −δ + bc(1−m)2v2

(w+(1−m)v)2

 .

Theorem 2. For model (2), we have

1. If α + h1 > 1 and d+h2
α < c < d+h2

α+h1−1 , a system of (2) has an equilibrium point E2 is locally
asymptotically stable, .

2. E∗(u∗, v∗, w∗) is the interior equilibrium point is locally asymptotically stable, if A > 0, C >
0, AB− C > 0.

Proof: 1. At an equilibrium point E2, the model (2) Jacobian matrix is given by

J(E2) =


−ū + αūv̄

(ū+v̄)2 −ū− αū2

(ū+v̄)2 0
cαv̄2

(ū+v̄)2 − cαūv̄
(ū+v̄)2 −b

0 0 bc− δ

 .

The characteristic equation of J(E2) is (λ2 + Mλ + N)(λ− bc + δ) = 0. Where,

M = ū + (c−1)αūv̄
(ū+v̄)2 and N = cαūv̄

ū+v̄ > 0.

The eigenvalues of the above Jacobian matrix at E2 are λ1,2 = −−M±
√

M2−4N
2 and

λ3 = bc− δ.
2. The Jacobian matrix at E∗ (u∗, v∗, w∗) is

J(E∗) =


−u∗ + αu∗v∗

(u∗+v∗)2 −u∗ − αu∗2
(u∗+v∗)2 0

cαv∗2
(u∗+v∗)2 − cαu∗v∗

(u∗+v∗)2 +
b(1−m)2v∗w∗

(w∗+(1−m)v∗)2 − b(1−m)2v∗2

(w∗+(1−m)v∗)2

0 bc(1−m)w∗2

(w∗+(1−m)v∗)2 − bc(1−m)v∗w∗

(w∗+(1−m)v∗)2

 .

The cubic characteristic equation of J(E∗) is λ3 + Aλ2 + Bλ + C = 0, where

A = −b11 − b22 − b33 > 0,B = b11b22 + b11b33 + b22b33 − b23b32 − b12b21,

C = −det[J(E∗)] = b11b23b32 + b12b21b33 − b11b22b33 > 0.

By the criterion Routh-Hurwitz, E∗ is locally asymptotically stable, if A > 0,B > 0,
and AB − C > 0.

6. Global Stability

In this section, we studied the global stability of the system (2) around the positive
equilibrium E∗(u∗, v∗, w∗).

Theorem 3. The point of interior equilibrium is globally asymptotically stable if α(A− bc2α) +

bc2α > 0 and cαu∗
(u+v)(u∗+v∗) −

b(1−m)2w∗

(w+(1−m)v)(w∗+(1−m)v∗) > 0, for all (u, v, w) ∈ R3
+, then E∗ is

globally asymptotically stable.

Proof. A function of Lyapunov form

L1(u, v, w) = L2(u− u∗ − u∗ln
u
u∗

) + (v− v∗ − v∗ln
v
v∗

) + L3(w− w∗ − w∗ln
w
w∗

),
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where L2, L3 are positive constant. Differentiating L1 with respect to t along the solution of
(2), a little algebraic manipulation yields

dL1

dt
=− L2{1−

αv∗

(u + v)(u∗ + v∗)
− h1}(u− u∗)2 − L2(u− u∗)(v− v∗)

+
(cαv∗ − Aαu∗)
(u + v)(u∗ + v∗)

(u− u∗)(v− v∗)

− { cαu∗

(u + v)(u∗ + v∗)
− b(1−m)2w∗

(w + (1−m)v)(w∗ + (1−m)v∗)
− h2}(v− v∗)2

− Bcb(1−m)v∗

(w + (1−m)v)(w∗ + (1−m)v∗)
(w− w∗)2

+ (1−m)
Bcbw∗ − b(1−m)v∗

(w + (1−m)v)(w∗ + (1−m)v∗)
(v− v∗)(w− w∗).

We choose L2 = cv∗
u∗ and L3 = (1−m)v∗

cw∗ .

dL1

dt
=− cv∗

u∗
{1− αv∗

(u + v)(u∗ + v∗)
− h1}(u− u∗)2

− b(1−m)2v∗2
w∗(w + (1−m)v)(w∗ + (1−m)v∗)

}(v− v∗)2 − cv∗

u∗
(u− u∗)(v− v∗)

− { cαu∗h2

(u + v)(u∗ + v∗)
− b(1−m)2w∗

(w + (1−m)v)(w∗ + (1−m)v∗)
}(v− v∗)2.

Now the condition α(A− bc2α) + bc2α > 0 implies that 1− αv∗
(u+v)(u∗+v∗) > 0. Thus, E∗ is

globally asymptotically stable.

7. Hopf-bifurcation analysis

We examine the model’s bifurcation in this section based on the rate of refuge. The
theorem below demonstrates that for the bifurcating parameter m, a given Hopf-bifurcation
exists.

Theorem 4. If the bifurcation parameter m exceeds a significant value, the model (2) undergoes
Hopf-bifurcation. The occurrence of Hopf-bifurcation conditions at m = m∗ as follows,

1. L(m∗)M(m∗)−N (m∗) = 0,
2. d

dm (Re(λ(m)))|m=m∗ 6= 0, where λ is the zero of the characteristic equation corresponds to
the positive equilibrium point.

Proof. For m = m∗, let the characteristic equation (3) implies that

(λ2(m∗) +M(m∗))(λ(m∗) + L(m∗)) = 0. (4)

which implies that ±i
√
M(m∗) and −L(m∗) are the roots of the above equation (4).

We need to satisfy the following transversality condition to demonstrate that the Hopf-
bifurcation at the point m∗ = m. d

d f (Re(λ(m)))|m=m∗ 6= 0. For all m, the general roots
of the form λ1,2 (m) = r(m)± is(m), and λ3(m) = −A1(m). Now, we check the condi-
tion d

dm (Re(λj(m)))|m=m∗ 6= 0, j = 1, 2. Let, λ1(m)= r(m) + is(m) in (4), we get ζ1(m) +
iζ2(m) = 0. Where,

ζ1(m) =r3(m) + r2(m)L(m)− 3r(m)s2(m)− s2(m)L(m) + r(m)M(m) + L(m)M(m),

ζ2(m) =3r2(m)s(m) + 2r(m)s(m)L(m)− s3(m) + s(m)M(m).
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In order to fulfill the equation (4), we must have ζ1(m) = 0 and ζ2(m) = 0, then differenti-
ating ζ1 and ζ2 with respect to m. We have

dζ1
dm = φ1(m)r

′
(m)− φ2(m)s

′
(m) + φ3(m) = 0, (5)

dζ2
dm = φ2(m)r

′
(m) + φ1(m)s

′
(m) + φ4(m) = 0, (6)

where,

φ1(m) =3r2(m) + 2r(m)L(m)− 3s2(m) +M(m), φ2(m) = 6r(m)s(m) + 2s(m)L(m),

φ3(m) =r2(m)L′(m)− s2(m)L′(m) +N ′(m) +M′
(m)r(m),

φ4(m) =2r(m)s(m)L′(m) + s(m)M′
(m).

On multiplying (5) and (6) by φ1(m) and φ2(m) respectively,

r
′
(m) = − φ1(m)φ3(m)+φ2(m)φ4(m)

φ2
1(m)+φ2

2(m)
. (7)

Substituting r(m) = 0 and s(m) =
√
M(m) at m = m∗ on φ1(m), φ2(m), φ3(m) and φ4(m)

we obtain

φ1(m∗) = −2M(m∗), φ2(m∗) = 2
√
M(m∗)L(m∗),

φ3(m∗) = −M(m∗)L′(m∗) +N ′(m∗), φ4(m∗) =
√
M(m∗)M′

(m∗).

The equation (7), implies

r
′
(m∗) = N ′ (m∗)−(L(m∗)M′ (m∗)+M(m∗)L′ (m∗))

2(M2(m∗)+L2(m∗)) , (8)

If N ′(m∗)− (L(m∗)M′
(m∗) +M(m∗)L′(m∗)) 6= 0, which implies that

d
dm (Re(λj(m)))|m=m∗ = r

′
(m∗) 6= 0. j = 1, 2, and λ3(m∗) = −L(m∗) 6= 0. The condition

N ′(m∗) − (L(m∗)M′
(m∗) +M(m∗)L′(m∗)) 6= 0, is confirmed that the transversality

criteria hold, thus the model (2) undergoes the Hopf-bifurcation at m = m∗.

8. Numerical Simulations

In this part, we show some few numerical simulations on the system (2) are per-
formed in this section to validate the theoretical conclusions. The system parameters are (
2) as α = 1.2, b = 1.8, c = 0.85, d = 0.2, δ = 0.8, h1 = 0.2, h2 = 0.15, and (u(0), v(0), w(0)) =
(0.5, 0.5, 0.5). Also, we choose m = 0.6 since it meets the inequality (3). Hence, E∗(u∗, v∗, w∗) =
(0.2957, 0.2089, 0.1250) is locally asymptotically stable and the criteria of Theorem 2 are
satisfied as A = 0.5706 > 0, AB− C = 0.0461 > 0.

Figure 1. Here u(0) = 0.5, v(0) = 0.5, w(0) = 0.5 and α = 1.2, b = 1.8, c = 0.85, d = 0.2, δ = 0.8, h1 = 0.2, h2 = 0.15, m = 0.6.
(a) Phase portrait of the system (2) at E∗(b) uv-plane (c) vw-plane (d) Time series of system (2).
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9. Discussion

In this study, we examined an eco-epidemiological model that included a prey refuge,
prey harvesting, and infection in the population of prey. The model was controlled by
a modified logistic equation. A more accurate model is produced when a refuge and
harvesting are included in the system (1). The biological control of a pest may benefit from
a refuge and harvesting; yet, expanding the refuge could result in higher prey numbers
and population outbreaks. In addition, increasing the pace at which susceptible prey is
harvested causes an increase in the number of infected prey while decreasing the population
of predators and susceptible prey. Theorem 1 establishes that the non-dimensionalized
system (refeqn2) is uniformly bounded, which suggests that the system exhibits good
biological behaviour. The underlying premise that most epidemic models we see in nature
correspond to stable equilibria is typically the one that theoretical epidemiologists follow in
deterministic situations. The most significant equilibrium point from this perspective is E ∗
(u∗, v∗, w∗), which we have shown. Now we observe that the size of the susceptible prey
(u) in the absence and presence of infected prey (v) is ū = (d+h2)

c2α
(c(1− h1− α)+ d+ h2) and

u∗ = A
c4α2b2 (c2αb− α(c2b(α + h1)− A)), respectively, so that u∗ − ū = b(1−m)(bc−δ)

b2c4α2 [(c2αb−
α(c2b(α + h1)− A)) + bcα(d + h2)] > 0 whenever bc > δ. This indicates that if the force of
infection is high, then predator attack causes enhancement of the susceptible prey. All our
important mathematical findings are numerically verified, and a graphical representation
of a variety of solutions to the system (2) is depicted using MATLAB. Finally, our model
can be generalized in obvious ways to food chains and competitive systems.
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