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Abstract: Snakebite is a neglected public health issue in many tropical and subtropical countries. 10 

Each year, about 5.4 million snake bites occur, resulting in 138,000 deaths, and over 400,000 ampu- 11 

tations and other permanent disabilities. The bite causes severe neurotoxic, hemorrhagic and myo- 12 

toxic damage, the extent of which depends on the toxicity and venom composition of the snake 13 

species. Therefore, predicting the toxicity from snake venom composition would vastly improve 14 

diagnosis, antivenom treatment, saving lives and limbs. Herein, we investigate the potential of Ma- 15 

chine Learning (ML) in venomics, by training several models to predict Lethal Dose (LD50) from 16 

venom composition. The analysis was conducted on 130 snake species (15% of all venomous spe- 17 

cies), using five ML models: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Linear 18 

Regression, Decision Tree, Random Forest, and four ensemble learning methods: Stacking, Voting, 19 

Bagging, AdaBoost, trained to predict LD50 from relative protein abundance. Although, data from 20 

13 proteins and enzymes were combined, results showed an overall weak correlation between 21 

model prediction and LD50 (Spearman correlations ranging from 0.49 to 0.53, and Pearson correla- 22 

tions ranging from 0.30 to 0.47), even when considering only the highly significant proteins and 23 

enzymes: SVMP, SVSP, 3FTx, and PLA2. These results, challenge the assumption that relative pro- 24 

tein abundance is the main driver of toxicity. They suggest that toxicity is a multi-factor phenome- 25 

non influenced by different biological aspects, such as protein 3D structure and potential binding 26 

sites. This in turn highlights the need for high quality multi-modal venomics databases, combining 27 

toxicity with several biological factors such as protein structure and metabolic data to better under- 28 

stand the nature of snake venom toxicity. 29 

Keywords: Snakebite; Venom composition; Machine Learning; Lethal Dose (LD50); LD50 prediction  30 

 31 

1. Introduction 32 

Snakebite is a neglected tropical disease that causes extensive neurotoxic, hemor- 33 

rhagic, and myotoxic damage, the severity of which is determined by the snake's toxicity 34 

and venom composition. Accurate prediction of the toxicity of snake venom, particularly 35 

the lethal dose (LD50) values, is crucial for the development of effective antivenoms and 36 

other therapies [1]. While in vivo animal studies remain the gold standard for determining 37 

LD50 values, this approach is hampered by ethical, temporal, and financial challenges [2]. 38 

Machine learning (ML) methods provide a promising approach for predicting LD50 39 

values and identifying potential leads for developing effective antivenoms [3]. This ap- 40 

proach offers the ability to evaluate the toxicity of venom compounds before performing 41 

animal studies, thereby decreasing time and costs associated with antivenom develop- 42 

ment while also reducing the need for animal testing [4].  43 
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Here, we used five ML algorithms and four ensemble learning methods to predict 1 

LD50 values of 13 relative protein abundances using data from 130 snake species (15% of 2 

all venomous species) belonging to the Viperidae, Elapidae, and Crotalidae families (Fig- 3 

ure 1).  4 

 5 

Figure 1. Relative distribution of the most characterized protein families for Crotalidae, Viperi- 6 
dae, and Elapidae. (A) Percentage distribution of snake species among Viperidae, Elapidae, and 7 
Crotalinae families. (B) Distribution of protein families from Crotalidae, Viperidae, and Elapidae. 8 
3FTx, three finger toxins; SVMP, snake venom metalloproteinases; SVSP, snake venom serine pro- 9 
teases; PLA2, phospholipase A2; LAAO, l-amino acid oxidases; NP, natriuretic peptides; KUN, Ku- 10 
nitz peptides; DIS, disintegrins; CTL/SNACLEC, C-type lectins, and CTL-like proteins; MVC, minor 11 
venom components; CRiSP, Cysteine-Rich Secretory Proteins. 12 

2. Methods 13 

All models were trained to predict LD50 from the relative protein abundance of 13 14 

proteins using a five-fold cross-validation with  the python module Scikit-learn [5]. Re- 15 

sults for  five ML algorithms were evaluated: Linear Regression, Decision Tree, Support 16 

Vector Regression, Random Forest, and MLP (Figure 2). These models were also com- 17 

bined using four ensemble learning methods (Stacking [6], Voting [7], Bagging, [8]. and 18 

AdaBoost [9].) (Figure 2). The efficiency of each model was evaluated using Pearson and 19 

Spearman correlation coefficient (Figure 3,4).  20 

Figure 2. Five ML algorithms and four Ensemble learning methods to predict LD50 correlation 21 
scores. ML models were trained using 13 protein expressions as an input to predict correlations 22 
with LD50 as a target. Four ensemble learning methods were used to validate accuracy and enhance 23 
predictive performance of the ML models. 24 
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3. Results 1 

Pearson correlations scores of the five ML regression models ranged from 0.30 to 0.47. 2 

Performances for the four ensemble learning methods ranged from: 0.49 to 0.53. Highest 3 

Spearman score was obtained using the AdaBoost method followed by Bagging, suggest- 4 

ing that there is value in combining the strengths of several machine learning models for 5 

the prediction of LD50s. However, prediction results remain relatively low, suggesting 6 

that relative protein abundance is but one of the factors behind snake venom toxicity.  7 

 8 

Figure 3. Spearman Correlation scores of four ensemble learning methods. AdaBoost achieved 9 
the highest performance with a score of 0.53. The other three methods, Bagging, Voting, and Stack- 10 
ing, showed similar low scores ranging from 0.49 to 0.51. 11 

 12 

 13 
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Figure 4. Pearson Correlation scores of five ML regressors. Decision Three achieved the highest 2 
performance with a score of 0.47. MLP had the lowest score of 0.30 due to the limited amount of 3 
data. The other three models, Linear Regression, SVR, and Random Forest, showed similar low 4 
scores ranging from 0.38 to 0.43. 5 

4. Conclusions 6 

This study combined data from 13 proteins and enzymes to predict LD50 values, but 7 

the results revealed a low correlation. Rather than supporting the hypothesis that relative 8 

protein abundance is the primary determinant of toxicity, the findings suggest a weak 9 

correlation between model prediction and LD50. Despite the relatively limited size of the 10 

dataset (13 protein families for 130 snakes), these results suggest that snake venom toxicity 11 

is a multifaceted phenomenon induced by several biological factors besides relative pro- 12 

tein abundance, factors such as protein 3D structure and potential binding sites. This 13 

study highlights the necessity for   high-quality, multi-modal venomics databases com- 14 

bining abundance with other modalities such as protein structure and metabolic data to 15 

help understand the intricate mechanisms involved in snake venom toxicity. 16 
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