SHIMADZU

Distribution analysis of galanthamine, a plant alkaloid, by MS imaging

Kaoru Nakagawa, Tetsuo Iida, Manami Kobayashi Shimadzu Corporation, Solutions COE, Heith Care Unit

1. Introduction

Plant alkaloids are used in various pharmaceuticals, such as anticancer drugs and For our sample, we used *Narcissus tazetta* with leaves growing to about 15 cm in length. analgesics. Among these plant alkaloids, galanthamine is a Amaryllidaceae-type alkaloid Galanthamine was extracted with 50% EtOH aq. from freeze-dissolved leaves. The solution was analyzed via the DPiMS QT and the LCMS-9030 (Shimadzu Corporation). with acetylcholinesterase inhibitors used in the treatment of neurological diseases such as Alzheimer's disease. Although the chemical synthesis of galanthamine has been Data analysis was performed using the LabSolutions Insight ExploreTM software successfully achieved, *Narcissus* is the main source of its production. Research indicates (Shimadzu) that galanthamine content varies not only with the type of *Narcissus*, but also with the Frozen leaves and bulbs were sliced to a thickness of 20 μ m using a microtome and developmental stage and the part of the plant¹⁾. Pharmaceutical companies are pursuing mounted on indium tin oxide (ITO) coated glass slides (Matsunami). These were coated plant species with higher galanthamine content to increase pharmaceutical productivity. with α -cyano-4-hydroxycinnamic acid (CHCA) via vapor deposition by using the matrix

In this study we were able to quickly confirm the presence of galanthamine in our Narcissus sample using the DPiMS[™] QT probe electrospray ionization (PESI) kit and the LCMS quadrupole time-of-flight (Q-TOF) mass spectrometer (MS). Subsequently, we analyzed the distribution of galanthamine by MS imaging (MSI) using the iMScope QT and a LCMS Q-TOF MS.

Sample plate

In the DPiMS QT, the sample adhering to the probe surface is ionized by applying a voltage to the probe tip and then introduced directly into the mass spectrometer.

Fig. 2 Principles of PESI

In MS imaging, the section to be analyzed is divided into small areas (pixels) of several um each, and MALDI mass spectrometry is performed on each pixel. The distribution of the molecule of interest can be confirmed visually by shading each pixel according the ionic strength of the molecule of interest in the obtained spectrum.

Fig. 3 Principles of MSI

2. Sample Preparation and Analysis Conditions

sublimation apparatus iMLayer[™] (Shimadzu) at a thickness of 0.7 µm. MSI analysis was performed using the iMScope QT atmospheric MALDI equipped with an optical microscope and the LCMS-9030 (Shimadzu). Data analysis was performed using the IMAGEREVEAL[™] MS (Shimadzu).

Table1. Analytical settings of PESI

ass spectrometer		о́. ес.
System	: DPiMS QT+LCMS-9030	
Polarity	: Positive	17 To watch Carlos
DL temp	: 250 °C	
Heat block temp	: 50 °C	
Interface Voltage	: 3.5 kV	
MS Range	: MS / MS/MS <i>m/z</i> 50-2,000	
Measurement Time	: 0.5 min	

Table2. Analytical settings of MSI

: iMScope QT+LCMS-9030

: a-Cyano-4-hydroxycinnamic Acid

: Deposition with 0.7 mm Thickness

: Positive

: 290 °C

: 450 °C

:1/2

: 50 / 60

: 20 kHz

: iMLayerTM

(CHCA)

: *m/z* 280-335

: 10 / 25 mm

Mass Spectrometer

- System
- Polarity
- DL temp
- Heat block temp
- MS Range
- Spatial Resolution (Pitch)
- Laser Diameter Setting
- Laser Intensity
- Laser Repetition Frequency
- Matrix Coating
- System
- Matrix Used
- Coating Method

Easy

switching

3. Results

Rapid Detection of Galanthamine in *Narcissus tazetta* by PESI

detected

Distribution analysis of galanthamine in Narcissus tazetta by MSI

The distribution of galanthamine, lycorine, and tazettine in sections prepared from the bulb and leaves (two locations) of the Narcissus tazetta shown in Fig. 5 was analyzed by MSI. The MS imaging results of the entire section at 25 µm spatial resolution and the area observed with an optical microscope at 5x objective lens at 10 µm spatial resolution are shown in Fig. 6. The results showed good MS images of galantamine, lycorine, and tazettine from all samples. The MS images of the bulb showed that galanthamine was distributed mostly in the section of the bulb that later grows and becomes the leaves, whereas MS images of lycorine and tazettine did not show such distribution, suggesting that the distribution area of plant alkaloids in the bulb differs from species to species, but no such differences in distribution were observed in the leaf cross sections.

Narcissus tazetta were grown in soil culture with leaves growing to about 15 cm. Three types of sections were prepared: bulb, root leaf, and leaf cross section.

DPiMS, Labsolutions Insight Explore, iMLayer and IMAGEREVEAL are trademarks of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Galanthamine was rapidly detected in the leaf extract solution using the DPiMS QT and the LCMS-9030 in only 0.5 min. Accurate mass analysis confirmed the presence of Galanthamine in Narcissus tazetta. Other plant alkaloids, Lycorine and Galanthamine, metabolite Choline, and sugars composed of Hexose were also

Fig5. Location of *Narcissus tazetta* section

a. Bulb (CCD camera) 25 μm spatial resolution

f. Leaf (optical microscope at 5x objective lens) 10 μ m spatial resolution

4. Conclusion

The combination of PESI and Q-TOF was able to detect galanthamine in narcissus with a high mass accuracy of within 1 mDa. The time required for analysis was significantly reduced compared to that by LC or LC/MS with a measurement time of 0.5 min, suggesting that rapid screening is possible. The specific distribution of galantamine in narcissus bulbs was confirmed by MS imaging analysis using a combination of iMScope QT and Q-TOF, with the ionization unit replaced from PESI to MALDI. Such distribution analysis enables identification of regions with high galanthamine content, facilitates efficient isolation and purification in the pharmaceutical manufacturing process, and is expected to contribute to the reduction of extraction costs.

Fig. 6 Mass images of alkaloids in *Narcissus*