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Abstract: The spread of invasive pests is accelerated by globalization and changes in climate condi-

tions, posing a significant threat to agricultural and forest ecosystems. Advances in electronic nose 

sensors (e-noses) have opened new avenues for monitoring and detecting plant diseases and pests 

through the analysis of emitted volatile organic compounds (VOCs). The current work reviews the 

most recent developments in e-nose sensors and their application in plant disease and pest detection 

over the past five years. It also explores the challenges associated with VOC detection in agricultural 

settings where field sampling has a focal role in monitoring and management. 
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1. Introduction 

Invasive pests and pathogens pose a significant threat to plant health for the agron-

omy and forestry sectors. These organisms invade new geographic areas where they pro-

liferate and damage the environment by altering ecosystems, often leading to the extinc-

tion of native species, or damaging agricultural production [1]. Since they disrupt the del-

icate environmental balance by outcompeting native species, plant pests contribute to the 

spread of diseases, reduce crop yield, and lead to economic losses and/or food shortage 

for communities. Moreover, they can have long-lasting impacts on the environment, al-

tering habitats and reducing biodiversity [2]. In the last few decades, the spread of plant 

pests has been accelerated through an increased movement of materials, goods, as well as 

by large-scale trade and travel. Furthermore, warmer temperatures and changes in pre-

cipitation patterns enable pests to expand their geographic range into regions where they 

previously could not survive or reproduce successfully. Such fluctuations in climate con-

ditions, and the increased frequency of extreme events, can impact the health and resili-

ence of native plants, making them more susceptible to invasive pests. The loss of biodi-

versity can intensify the spread of invasive pests, through a disruption of e.g., natural 

predators, creating conditions that favour the proliferation of specific pests [3]. 

Phytophagous insects are in the forefront of pest invasions; however, it is important 

to keep in mind that extremely damaging plant pests also include disease-causing nema-

todes and parasitic protozoa as well as microorganisms such as bacteria, viruses and 
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fungi. The European Commission recognized and designated 20 priority pests in the list 

of quarantine pests [4], whose economic, environmental, and social impact on EU territory 

is the most severe. Of these, four are non-insect pests, namely Bursaphelenchus xylophilus 

(nematode), Candidatus Liberibacter spp. (bacteria), Phyllosticta citricarpa (fungus) and Xy-

lella fastidiosa (bacteria). The list is based on impact assessments carried out by The Euro-

pean Food Safety Authority (EFSA) and the European Commission’s Joint Research Cen-

tre (JRC). The assessments considered a number of indicators such as impact on crop 

yields, damage to trade and the cost of control measures, social consequences such as un-

employment, reduced food safety and security, as well as impact on landscapes and dam-

age to the environment, e.g., reduced biodiversity and ecosystem services. 

This underlines the relevance of controlling and managing invasive pests, practices 

that are essential for safeguarding plant health, preserving agricultural productivity, and 

maintaining the overall ecological balance. Therefore, the development of novel concepts 

for the timely and non-destructive pest detection and management of serious plant pests, 

both during import and in the field, is of the utmost importance. The application of elec-

tronic nose (e-nose) sensors contributes to the prevention and control of plant diseases by 

swiftly detecting changes in volatile organic compounds (VOCs) emitted by plants when 

they are infected or stressed, allowing for early intervention and targeted management 

strategies to curb disease spread. 

2. Technology and rapid detection of plant diseases and pests 

2.1. Electronic nose (e-nose) sensors 

E-noses are devices that detect and analyse volatile organic compounds (VOCs) from 

targeted samples and have found wide applications in quality control, environmental 

monitoring, and agriculture [5], as well as proven to be a useful tool in plant protection 

[6-13]. The main constituents of an e-nose system are a sensor array, the signal condition-

ing unit, and a pattern recognition algorithm. E-nose systems utilize sensor arrays to gen-

erate a distinct response to specific VOCs and pattern recognition software for resolution 

and identification. When a sample is exposed to the sensor array, it triggers a reversible 

physical or chemical change in the sensing material, leading to alterations in its electrical 

properties. These changes are transformed into electrical signals, which are preprocessed 

and conditioned for identification by a pattern recognition system [14]. Therefore, the e-

nose system ensures a unique overall response pattern from the array for a specific VOC 

within a group of VOCs considered by the system. 

To improve sensitivity, selectivity and the ability to detect a wide range of VOCs, 

different sensor types can be employed. The most utilized classes of sensors are conduc-

tivity sensors, gravimetric sensors, and optical sensors [15]. Conductivity sensors employ 

conducting polymers (CP) and metal oxide semiconductors (MOS), while gravimetric sen-

sors include surface acoustic wave (SAW) sensors and quartz crystal microbalance (QCM) 

sensors. Another approach to VOC identification in e-nose systems involves optical sensor 

arrays [11]. The choice of sensors depends on factors such as the targeted applications, 

desired detection capabilities, and environmental conditions, and must take into consid-

eration the specific biological parameters of the targeted pest or disease. 

2.2. Progression of scientific output 

Over the past two decades, there has been a growing research interest in the applica-

tion of e-noses for detecting plant pests (Figure 1). However, a comprehensive review of 

the bibliographic data using Web of Science search engine, encompassing all available 

databases and published works that report the application of e-noses to detect volatiles of 

pests or pest-related diseases, reveals that the intensity of research has fairly increased in 

the last five years. By researching the topics of “nose”, “volatiles” and “pest” from 2019 

to 2023, a total of 12 publications were identified reporting the use of electronic sensors 

for detecting plant pests and diseases. 
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Figure 1. Cumulative number of published works reporting on the application of e-noses to detect 

volatiles of pests or pest-related diseases, obtained from Web of Science 

(https://www.webofknowledge.com, accessed 14 July 2023). 

The journals where these works were published cover mainly the scientific fields of 

chemistry (25%), plant sciences (24%), engineering (19%), agriculture (16%) and environ-

mental sciences (16%) (Figure 2). The listed publications were cited in 79 works, with an 

average of 7 citations per work. These citations were included in journals specialized in 

chemistry, plant sciences, environmental sciences, agriculture, instruments and instru-

mentation, engineering, and molecular biology. The plants that receive the most attention 

include Poaceae, e.g., wheat, Solanaceae, e.g., tomato, Oleaceae, e.g., olive and green ash, 

Theaceae, e.g., tea, Rutaceae and Cupressaceae [6-8,13,16-21]. Furthermore, since 2019, the 

cumulative number of citations of all publications (2003 to 2023) on this topic has greatly 

increased, indicating a surge in application and research. 

 

Figure 2. Scientific fields covered by the journals of the publications on electronic noses identified 

from 2019-2023, according to the Web of Science (https://www.webofknowledge.com, accessed 14 

July 2023). 

3. Advantages and challenges 

3.1. VOCs profiles for plant pest detection 

Developing technologies in plant pest detection minimizes the reliance on subjective 

human judgment and offers consistent, objective results, providing consistent and data-
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driven insights to optimize pest management practices and ensure sustainable plant 

health. E-nose based detection drastically reduces the time needed for analysis compared 

to conventional methods for VOCs identification and enables early intervention and im-

mediate response to mitigate plant pest infestations. It is a non-invasive method of pest 

detection, minimizing harm to plants and reducing the need for extensive manual inspec-

tions. High sensitivity enables e-noses to detect pests at low infestation levels, helping the 

implementation of targeted pest management strategies and reduce the need for excessive 

pesticide use. Furthermore, e-noses can be integrated into real-time monitoring systems. 

As stated before, the appropriate e-nose sensor relies upon the specific application, 

nature of the sample and the environment. Recognizing the value and advantages of cus-

tomizing e-nose devices for specific tasks [22], rather than aiming for a general-purpose 

device that works for a wide range of gas-sensing uses, results in a more accurate, efficient, 

and reliable tool. Targeting specific pests offers a precise, user-friendly, and cost-effective 

approach for larger scale pest control. However, e-nose technology faces several chal-

lenges. 

Plant environments often contain complex mixtures of VOCs, including compounds 

from sources other than the plants themselves. For differentiating pest-specific profiles 

within these mixtures, structured research and comprehensive databases of both plant 

specific volatiles and pest VOCs are necessary. Additionally, pests of the same species can 

exhibit variations in VOC emissions based on such factors as age, sex, and physiological 

state, or the plant may even be infected with different pests and diseases simultaneously, 

complicating an accurate identification. Therefore, validating e-nose results against tradi-

tional pest detection methods is essential to ensure the accuracy of the e-nose approach. 

The extensive data generated by e-noses requires advanced data analysis techniques, in-

cluding pattern recognition and machine learning. To compare obtained results across 

different studies and/or devices standardized protocols should be outlined. 

3.1. In-situ detection 

Profiling plant VOCs is conventionally carried out in a sealed chamber with con-

trolled temperature and humidity, which simulate the environment of a greenhouse and 

the field [15]. Yet, the most powerful approach in larger scale pest control is obtaining 

real-time, accurate, and contextually relevant data for decision-making and intervention 

in the field. Still, deploying e-nose in outdoor agricultural settings requires addressing 

challenges like sensor stability, power sources, and data communication. As changes in 

environmental conditions, such as temperature, humidity, and background, can affect 

sensor responses, tailored and targeted devices become even more important. 

Addressing the complexity and variability of VOC profiles when using e-nose tech-

nology in the field requires a multifaceted approach. Appropriate sensor selection target-

ing specific VOC profiles, multivariate analysis, baseline correction, and regular equip-

ment calibration help enhance data accuracy and reliability. Simultaneous environmental 

monitoring, which records temperature, humidity, wind direction, GPS location, and 

other relevant factors that could influence VOC emissions, alongside VOC measurements, 

can provide context and validation [23]. Machine learning and pattern recognition models 

aid in interpreting complex VOC profiles [24], while real-time monitoring facilitate quick 

responses and adjustments in the field. 

The advancement of smaller, lightweight, and portable e-nose devices offers a more 

efficient means for early disease diagnosis in field scenarios. To enhance practicality for 

plant pest detection, especially in open-field situations, the development of small-scale 

sensor arrays utilizing integrated circuit technologies and micro-electromechanical sys-

tems [25] can lead to the production of highly portable and cost-effective detectors. The 

costs can be mitigated by 3D printing of some components. Also, coupling of e-nose with 

a drone, allows sampling on the larger surfaces or infected plant communities [12]. These 

advances will allow real-time monitoring and the creation of field-deployable devices 

tuned to specific plants, pests, seasonal variations, and sample locations, providing more 

effective means of achieving early disease diagnoses in the field. Research is ongoing to 
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develop specialized equipment based on e-noses, for example, a project financed by Eu-

ropean Commission [26] is developing an innovative sensor platform that can rapidly de-

tect different pests during import and in the field, to stop their establishment and reduce 

pesticide inputs, in Europe. Five pests were selected for the first optimization that include 

insects, nematodes and Oomycota, but will be extended to other important pests in later 

stages. Headspace GC-MS is being employed to profile VOCs and then used to fine-tune 

sensor components for the development of optimized sensor systems. Ultimately, a sensor 

system prototype will be validated in the field and at import control sites, leading to the 

development of a powerful e-nose-based specialized tool that can boost European plant 

pest control. 

4. Conclusions 

Advances in e-nose sensors have enhanced the approach to plant disease and pest 

detection. Key developments in e-noses include improved sensing technology, advanced 

data analysis techniques, real-time monitoring, portable and field-deployable devices and 

disease differentiation leading to early detection and prevention as well as reduced envi-

ronmental impact. In addition to technological improvement, effectively addressing cur-

rent challenges of plant pest control requires international cooperation, rigorous biosecu-

rity measures, early detection systems, and inclusive management strategies to minimize 

the impact of invasive pests on agricultural and ecosystems. The application of e-nose 

contributes to efficient, sustainable, and environmentally conscious agricultural practices, 

with the potential to transform how we manage plant health issues. This ensures both 

economic viability and ecological responsibility. 
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