

Proceedings Facile In-Situ Synthesis of Ti₃C₂T_x/TiO₂ Nanowires Toward Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid

Tao Yang*, Dengzhou Jia and Xinmei Hou

Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China * Correspondence authors: Tao Yang, E-mail address: yangtaoustb@ustb.edu.cn

Abstract: The development of electrochemical sensors with high sensitivity for the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) is urgently desirable in clinical medicine. However, the challenge lies in achieving simultaneous detection due to their closely oxidation potentials. In this work, we present the synthesis of a composite material comprised of insitu grown TiO₂ nanowires (NWs) on a Ti₃C₂T_x substrate (Ti₃C₂T_x/TiO₂ NWs) through a facile alkali process. By modifying a glassy carbon electrode (GCE) with Ti₃C₂T_x/TiO₂ NWs (Ti₃C₂T_x/TiO₂ NWs (Ti₃C₂T_x/TiO₂ NWs/GCE), it showed excellent electrocatalytic activity for the simultaneous detection of AA/DA/UA by regulating the surface functional groups of Ti₃C₂T_x. Remarkably, the Ti₃C₂T_x/TiO₂ NWs/GCE enabled simultaneous detection of AA in the range of 300-1800 μ M, DA in the range of 2-33 μ M, and UA in the range of 2-33 μ M. The limits of detection (LODs) for AA, DA, and UA were estimated as 66.07 μ M, 0.023 μ M, and 0.011 μ M, respectively. The proposed Ti₃C₂T_x/TiO₂ NWs/GCE demonstrated good stability, high selectivity, and reliable reproducibility, making it a promising electrochemical sensor for the detection of AA, DA, and UA. This work offers a new perspective for human health monitoring, paving the way for advancements in this field.

Keywords: Ti₃C₂T_x; TiO₂; Ascorbic acid; Dopamine; Uric acid; Electrochemical sensor

1. Introduction

Ascorbic acid (AA), dopamine (DA), and uric acid (UA) coexist in body fluids, with basal concentrations ranging from 100-1400 μ M, 0.01-1 μ M, and 200-500 μ M, respectively. They are three essential biomolecules coexisting in body fluids that play vital roles in regulating various physiological functions [1]. Fluctuations in the levels of these biomolecules have been linked to various common ailments such as skin rashes, Alzheimer's disease, Parkinson's disease, and gout [2, 3]. Therefore, the rapid and accurate simultaneous detection of AA, DA, and UA concentrations in body fluids plays a crucial role in disease diagnosis [4, 5]. In this work, a composite of TiO₂ nanowires grown in situ on Ti₃C₂T_x (Ti₃C₂T_x/TiO₂ NWs) was synthesized through a simple alkali treatment. By regulating the surface functional groups and incorporating TiO₂, the Ti₃C₂T_x/TiO₂ NWs modified electrode achieved the individual and simultaneous detections of AA, DA, and UA. Furthermore, the proposed Ti₃C₂T_x/TiO₂ NWs/GCE exhibited excellent stability, selectivity, reproducibility, and repeatability.

2. Result and Discussion

2.1. Characterization of Ti₃C₂T_x/TiO₂ NWs

SEM images in Fig. 1e-g depict the $Ti_3C_2T_x$ treated in a 6 M KOH solution for 10, 20, and 30 hours, respectively. After 10 hours of alkaline treatment, only a few NWs can be observed growing between the $Ti_3C_2T_x$ lamellae (Fig. 1a). Subsequently, after 20 hours of

alkali treatment, the number of NWs significantly increases (Fig. 1b). Moreover, as shown in Fig. 1c, the NWs start to clump together after 30 hours of alkali treatment. TEM and high-resolution TEM images in Fig. 1d-f display the Ti₃C₂T_x treated in a 6 M KOH solution for 20 hours. NWs with lengths ranging from 350-450 nm and diameters of 10-35 nm grow on the surfaces and edges of the Ti₃C₂T_x lamellae (Fig. 1d). The lattice fringe spacing of the lamellae is determined to be 0.253 nm, which corresponds to the (002) crystal plane of Ti₃C₂T_x (Fig. 1e). Additionally, the lattice fringe spacing of the NWs is measured to be 0.352 nm, in alignment with the (101) crystal plane of anatase TiO₂ (Fig. 1f) [6].

Figure 1. Ti₃C₂T_x, Ti₃C₂T_x treated at 6 M KOH for (a) 10 h, (b) 20 h, (c) 30 h; 20h-Ti₃C₂T_x/TiO₂ NWs (d) TEM images, (e-f) HR-TEM images.

2.1. Simultaneous measurement of AA, DA, and UA by DPV

Fig. 2 demonstrates the simultaneous detection of AA, DA, and UA by DPV on the $Ti_3C_2T_x/TiO_2$ NWs/GCE, with a scan rate of 50 mV s⁻¹. Fig. 2a exhibits distinct oxidation peak potentials for AA, DA, and UA, measuring 0.18 V, 0.32 V, and 0.59 V respectively. A linear relationship between the peak currents and concentrations is observed in the range of 300-1800 μ M for AA, yielding an R² value of 0.9953 (Fig. 2b). Similarly, for DA, multiple linear segments are observed within the concentration ranges of 2-9 μ M and 9-33 μ M, resulting in R² values of 0.9930 and 0.9943, respectively (Fig. 2c). For UA, multiple linear segments are observed within the concentration ranges of 2-7 μ M and 7-33 μ M, yielding R² values of 0.9860 and 0.9977, respectively (Fig. 2d). The LODs for AA, DA, and UA are estimated to be 66.07 μ M, 0.023 μ M, and 0.011 μ M, respectively.

Figure 2. (a) DPVs recorded for different concentrations of AA, DA and UA at the Ti₃C₂T_x/TiO₂ NWs/GCE in 0.1 M PBS (pH 7.4) upon successive additions from 300 to 1800 μ M for AA, 2 to 33 μ M for DA and 2 to 33 μ M for UA,.

3. Conclusion

In summary, the Ti₃C₂T_x/TiO₂ NWs modified GCE demonstrated the simultaneous detection of AA (300-1800 μ M), DA (2-33 μ M), and UA (2-33 μ M) with LODs of 66.07 μ M (AA), 0.023 μ M (DA), and 0.011 μ M (UA). The surface of Ti₃C₂T_x exhibited neutral properties due to the substitution of hydroxyl groups with fluorine groups after alkali treatment. Moreover, the active surface area of the Ti₃C₂T_x/TiO₂ NWs/GCE (0.39 cm²) was approximately five times larger than that of the bare GCE (0.08 cm²) due to the in-situ generation of TiO₂ NWs on Ti₃C₂T_x. The distinct separation of the detection peaks for AA, DA, and UA can be attributed to the enhanced transition of charge carriers at the heterojunctions of Ti₃C₂T_x and TiO₂. Overall, the electrochemical sensor based on Ti₃C₂T_x/TiO₂ NWs exhibits exceptional anti-interference ability, stability, and reliable reproducibility.

Reference

- W. Zhang, L. Liu, Y. Li, D. Wang, H. Ma, H. Ren, *et al.*, Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid, Biosens Bioelectron, 121(2018) 96-103. <u>http://doi.org/10.1016/j.bios.2018.08.043</u>
- [2] N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, *et al.*, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes, Adv Funct Mater, 18(2008) 3506-14. <u>http://doi.org/10.1002/adfm.200800951</u>
- [3] B. Habibi, M.H. Pournaghi-Azar, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry, Electrochim Acta, 55(2010) 5492-8. <u>http://doi.org/10.1016/j.electacta.2010.04.052</u>
- [4] J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, *et al.*, Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles, Colloids Surf B, 111(2013) 392-7.

http://doi.org/10.1016/j.colsurfb.2013.06.030

- [5] H.C. Lee, T.H. Chen, W.L. Tseng, C.H. Lin, Novel core etching technique of gold nanoparticles for colorimetric dopamine detection, Analyst, 137(2012) 5352-7. <u>http://doi.org/10.1039/c2an35586h</u>
- [6] M. Cao, F. Wang, L. Wang, W. Wu, W. Lv, J. Zhu, Room Temperature Oxidation of Ti₃C₂MXene for Supercapacitor Electrodes, J Electrochem Soc, 164(2017) A3933-A42. <u>http://doi.org/10.1149/2.1541714jes</u>