## Facile in-situ synthesis of $Ti_3C_2T_x/TiO_2$ nanowires toward simultaneous

## determination of ascorbic acid, dopamine and uric acid

**Dengzhou Jia**<sup>1</sup>, Tao Yang<sup>1,2\*</sup>, Kang Wang<sup>1</sup>, Linlin Zhou<sup>1</sup>, Enhui Wang<sup>1,2</sup>, Kuo-Chih Chou<sup>1</sup>, Hailong Wang<sup>3</sup>, Xinmei Hou<sup>1,2\*</sup> <sup>1</sup>Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China <sup>2</sup>Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110000, China

## Background

<sup>2</sup>Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110000, China <sup>3</sup>School of Materials Science Engineering, Zhengzhou University, Zhengzhou 450001, China



- Recently, people's concern for life and health has continued to increase, and there is a great need for efficient and accurate detection of small biomolecules in the human body
- Mxene due to its excellent electrical conductivity, high hydrophilicity, and good physical and chemical stability has gained attention as a promising material for electrochemical sensors
- TiO<sub>2</sub> have demonstrated the ability to enhance the separation peaks among biomolecules
- The complicated fabrication processes, associated high cost, and instability continue to hamper the application of electrochemical sensors.





- The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/TiO<sub>2</sub> NWs modified GCE demonstrated the simultaneous detection of AA (300-1800 μM), DA (2-33 μM), and UA (2-33 μM) with LODs of 66.07 μM (AA), 0.023 μM (DA), and 0.011 μM (UA)
- The surface of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> exhibited neutral properties due to the substitution of hydroxyl groups with fluorine groups after alkali treatment
- the electrochemical sensor based on  $Ti_3C_2T_x/TiO_2$  NWs exhibits exceptional anti-interference ability, stability, and reliable reproducibility