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Abstract: Tea and herbal infusions are the most consumed non-alcoholic beverages worldwide and 

possess bioactive components with multiple health benefits. They are categorized into different clas-

ses that depend on the elaboration process, origin, and components. Commonly, analytical methods 

are employed to classify tea according to its chemical composition by liquid and gas chromatog-

raphy-mass spectrometry, among others. Novel methods, such as electronic noses (e-noses), effec-

tively provide real-time and objective monitoring of odors for extended periods of time. This work 

aimed to classify 8 different types of tea (green, white, black, spearmint, mint, hibiscus, lemongrass, 

chamomile) using two feature extraction methods and two pattern recognition analyses that were 

compared. A total of 34 tea samples were analyzed by e-nose consisting of an olfactometer as a 

sample handling system, seven chemo-resistive gas sensors, and a 12-bit analog-to-digital converter. 

Tea samples were measured 10 times to ensure repeatability, resulting in a database of 340 tea 

measures with 2499 samples each per sensor. Data were pre-processed using Principal Component 

Analysis (PCA) and Parallel Factor Analysis (PARAFAC). The information extracted was classified 

by Artificial Neural Network (ANN) and k-nearest neighbor (k–NN). The best architecture in ANN 

and distance in k-NN were demonstrated by 10 k-fold cross-validation. The classification rate was 

93% in ANN and PCA, 73% in ANN and PARAFAC, 94% in k-NN and PCA, and 84% in k-NN and 

PARAFAC. This demonstrates that conventional PCA is better than complex PARAFAC. Our find-

ings not only contribute to the field of tea and herbal infusions classification but also underscore the 

potential of e-nose systems for discriminating between diverse tea types and herbal infusions based 

on their odor profiles. 
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1. Introduction 

Tea is the world’s most consumed aromatic, non-alcoholic beverage after water. It is 

common to refer to tea and herbal infusions as equal, yet the term tea focuses on the Ca-

mellia sinensis. Teas are classified into different groups depending on their manufactur-

ing process. On the other hand, herbal teas or infusions are made with fruits, flowers, and 

leaves of a variety of plants [1]. They possess multiple human health functions, like anti-

oxidation, anti-inflammation, and immune regulation, among others [2]. There are bio-

chemical components responsible for the color, taste, and aroma of tea; those related to 

the aroma are named volatile organic compounds (VOCs) [3]. 

Commonly, analytical methods, like GC-MS and FT-IR spectrometry are employed 

in the industry to classify products according to their chemical composition [4,5]. A new 

concept of analytical methods that emerged in the last years is known as electronic noses 

(e-noses), which identify odors by detecting the “fingerprint” of a chemical compound. 
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E-noses are a new concept in analytical procedures that have arisen recently. They 

identify scents by detecting the "fingerprint" of a chemical component. These systems are 

often composed of a gas-sensor array to detect odors and a processing data tool to analyze 

the information [6]. Currently, e-noses consider one subsystem related to the sampling 

handling to deliver odors to the sensor array. Today, e-noses are employed in several ap-

plications including medicine, healthcare, food, and beverages [7]. 

The data processing stage is one of the most important components in e-nose devel-

opment since it helps to generate a coherent and useful response. Often, this data pro-

cessing and modeling are based on the use of artificial ANN, k-NN, support vector ma-

chine (SVM), and random forest (RF), to name a few. Nevertheless, the signals from e-

noses are characterized by their high dimensionality and non-stationary regions that de-

mand feature extraction methods focused on reducing data. For this purpose, data could 

undergo mathematical transformations such as PCA, PARAFAC [8], and multi-way anal-

ysis, to mention the most widespread. 

This work implements a processing strategy that employs PCA and PARAFAC tech-

niques to extract data features from an e-nose that analyzes tea samples and compares 

their relevance using two recognition models based on ANN and k-NN. 

2. Materials and Methods  

2.1. Instrumentation and Data Collection  

The tea database was obtained using a lab-made e-nose consisting of an olfactometer 

that controlled the odor stimuli and injected the sample's VOCs into a chamber containing 

seven metal oxide sensors (MOXs) from MQ-series. These sensors detect various gases, 

including carbon monoxide, liquefied petroleum gas, natural gas, alcohol, benzene, me-

thane, and hydrogen. The voltage values were obtained by an acquisition board with a 

12-bit analog-to-digital converter at a 5 Hz sampling frequency and a Raspberry Pi 3+B 

single-board computer [9]. The set of samples was formed by 34 unblended tea samples 

from commercial brands. Teas were categorized into eight classes: green, white, black, 

spearmint, mint, hibiscus, lemongrass, and chamomile. Each tea sample (4.5 g) was placed 

in the e-nose platform for analysis. Then, odor stimuli started and lasted 500 s distributed 

as follows: 5 s for rest, 35 s for odors stimulation, and 460 s for relaxation. As a result, 2499 

samples were collected for each tea and sensor. 

Each tea was sampled and recorded 10 times to analyze the experiment's repeatabil-

ity. After every experiment, the sensor chamber was cleaned ten times with pure air. Fi-

nally, the database was shaped as a tridimensional matrix of 2499 samples, 340 records 

(34 teas x 10 repetitions), and 7 sensors.  

2.2. Data Feature Extraction and Modeling 

E-nose data were analyzed using PCA and PARAFAC methods to reduce dimension-

ality and extract relevant features designed to improve the classification task. Whereas 

PCA finds the linear correlation between the original data variables to produce new un-

correlated linear combinations of these variables using an orthogonal transformation [10], 

PARAFAC is a multi-way data decomposition method closely related to PCA applied to 

higher-order arrays [11]. 

One of the goals of these techniques is to determine the representative number of 

components that better represent the original data. For PCA, significant principal compo-

nents (PCs) could be chosen considering the accumulative variance since the algorithm 

typically orders them according to the most relevant variance; in this way, the first PCs 

usually represent the maximum variation present in the original variables. On the other 

hand, PARAFAC assumes the existence of a triple path in the data and finds an unique 

solution so that the components can be rearranged and scaled arbitrarily [11]; for the se-

lection of the optimal components, a diagnostic test is usually based on a core consistency 

diagnostic (CORCONDIA) [12]. 
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Two different classification models were used after the feature extraction stage, al-

lowing to identify patterns in the data. The first was ANN, which is based on the super-

vised learning approach. [13]. Its optimization was done using a standard trial-and-error 

process, where several parameters are fine-tuned to find the best configuration to achieve 

the performance. The second was k-NN, a popular supervised model that finds a group 

of k objects in the training set that are near to the test object. k-NN orders the information 

by computing distances between feature values [14]. 

In this way, four combinations were performed: PCA–ANN, PCA– k-NN, PARA-

FAC–ANN, and PARAFAC–k-NN. A k-fold cross-validation (k=10) was carried out to 

determine these classification models' classification capability to compare their perfor-

mance. Considering that the tea classes did not have the same number of samples; each 

class was split separately to ensure that the folds contained at least one sample of each 

type. The training matrix was built with 306 observations, while the test matrix included 

34 teas. The training data were normalized in the interval of [0,1], and the maximum and 

minimum values obtained were used to normalize test data. 

Finally, for each case, a confusion matrix was calculated to determine performance 

metrics: accuracy, precision, recall or sensitivity, and specificity [15]. 

3. Results and Discussion  

The data processing was performed on an AMD Ryzen computer. Different algo-

rithms were written by the authors in MATLAB (Math Work, Natick, MA, version R2022b) 

using three different toolboxes for the routines: Machine Learning Toolbox v12.0, and 

Deep Learning Toolbox v14.1. In addition, Eigenvector PLS_toolbox v7.8 was used to cal-

culate PARAFAC components. 

3.1. PCA Results  

Data were organized in a two-dimensional array for PCA, with the rows denoting 

teas and the columns denoting measurements for each sensor. In this way, PCA was ap-

plied to a matrix of dimensions of 340 x 17493. Figure 1 shows a PCA plot with the first 

three PCs, representing an accumulated explained variance of ca. 94.6%. As observed, dif-

ferent clusters are partially identified as the eight tea classes measured by MOXs. Consid-

ering that the first three components failed to achieve the recommended 95% of the accu-

mulated explained variance [16], a total of four PCs (ca. 96.8%), were used to feed the 

classification models. 

 

Figure 1. PCA score plot of the three first components from eight tea classes. 

3.2. PARAFAC Results. 

PARAFAC analysis was performed in the formed tridimensional matrix described in 

section 2.1. To choose the appropriate number of components, a CORCONDIA evaluation 

was done achieving a core consistency value of 99.2%. This result was close to the 100% 

described in the literature [18]. Figure 2 shows the PARAFAC components of each loading 
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matrix. The tea loadings represent tea variability; the intensity matrix shows changes in 

voltage values; finally, the sensor loadings describe the responses of each sensor. As can 

be seen, in order of importance, the obtained loading can be listed as follows: 1. Loadings 

for sensor, 2. Loadings for tea and 3. Loadings for intensities. The loadings for the sensor 

have the highest values and indicate which of the sensors contributes the most to detect 

the teas. Sensors 1 and 5 (MQ-7 and MQ-9) for component 2 provide the most, according 

to Figure 2c. Then, the loadings for tea indicate which teas are dominant in each compo-

nent. In this case, the teas with the highest loadings for component 2 are the most influen-

tial. Therefore, sensors 1 and 5 contribute to detect such teas. The loadings for intensities 

are less representative. In this case, component 1 is significantly predominant over com-

ponent 2, and most of the intensities contribute equally. 

 

   
(a) (b) (c) 

Figure 2. PARAFAC results loadings for (a) tea, (b) intensities, and (c) sensor. 

PCA and PARAFAC data features were employed to feed pattern recognition mod-

els. Either the ANN architectures or the parameters of k-NN were selected from initial 

proposals and tuned by an iterative process. Optimized models were verified through the 

10 k-fold cross-validation technique. 

Final ANN architectures were composed of 6 layers (4 x 35 x 40 x 14 x 5 x 1) using 

PCs and (2 x 30 x 40 x 20 x 5 x 1) considering PARAFAC components. The first layer cor-

responded to input data, and the last to tea classes. Both architectures employed logsig, 

tansig, logsig, logsig, tansig, and purelin activations functions, respectively. Both models 

were adjusted by applying a resilient backpropagation training algorithm and defining 

proper learning rate and error values. In this way, such values for PCA-ANN were 0.002 

and 0.02, while for PARAFAC–ANN were 0.09 and 0.09, respectively. 

A 10-fold cross-validation procedure was performed to validate the classification ca-

pability of the models. Each k-fold uses the same fit criterion, where the weights and bi-

ases were initialized randomly before the training process. Each result was saved and av-

eraged, and class metrics were calculated. Table 1 shows the mean confusion matrix and 

performance metrics results for PCA–ANN, and PARAFAC–ANN.  

Table 1. Confusion matrix and classification rate of PCA and PARAFAC using ANN. 

 
FE_1* = PCA. FE_2** = PARAFAC. 

Classes
FE_1* FE_2** FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2

White 100 90 0 10 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.99

Spearmint 0 0 90 86.6 10 3.3 0 10 0 0 0 0 0 0 0 0 0.99 0.96

Hibiscus 0 0 3.3 6.6 86.6 60 6.6 6.6 0 20 0 6.6 3.3 0 0 0 0.97 0.93

Lemongrass 0 0 0 5 7.5 12.5 85 57.5 7.5 17.5 0 7.5 0 0 0 0 0.97 0.87

Mint 0 0 0 0 0 2 2 20 94 58 4 16 0 4 0 0 0.98 0.85

Chamomile 0 0 0 0 0 0 0 5 0 8.3 93.3 75 5 8.3 1.6 3.3 0.98 0.88

Black 0 0 0 0 0 0 0 2 0 8 0 12 100 74 0 4 0.98 0.91

Green 0 0 0 0 0 0 0 0 0 0 0 1.6 5 8.3 95 90 0.99 0.96

0.98 0.92
Predicted class

T
ru

e 
cl

as
s

Total

Mint Chamomile Black Green Class. rateWhite Spearmint Hibiscus Lemongrass
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Lastly, k-NN modeling was implemented using euclidean distance and defining 

three neighbors to classify different types of tea. As in the case of ANN models, a k-fold 

cross-validation was carried out to reveal the variability of model classification against 

different data set sequences. Table 2 shows the mean confusion matrix and performance 

metrics results for PCA–k-NN and PARAFAC–k-NN. 

Table 2. Confusion matrix and classification rate of PCA and PARAFAC using k-NN. 

 
FE_1* = PCA. FE_2** = PARAFAC. 

From the reported tables, it observes that the classes with the highest accuracy were 

white tea with 100% for PCA–ANN, 99% for PARAFAC–ANN, 100% for PCA–k-NN, and 

99% for PARAFAC–k-NN; and green tea with 99% for PCA–ANN, 96% for PARAFAC–

ANN, 100% for PCA–k-NN, and 96% for PARAFAC–k-NN. In comparison, black tea re-

mained above 94% in general. The above metrics denote that the models correctly identify 

the different types of tea. Nevertheless, the algorithm occasionally mislabels the samples 

since the teas are extracted from the same plant, and more others share some VOCs. The 

difference between them is the manufacturing process, which provides chemical changes 

[17]. On the other hand, the algorithms fail to identify whether the tea is hibiscus or 

lemongrass, likely because they share VOCs as linalool, limonene, and hexanal, among 

others [18,19]. Figure 3 shows the average performance metrics for every model, exhibit-

ing the difference between models and the achieved rates per metric. As can be observed, 

higher metrics were obtained using the combination PCA-ANN and PCA- k-NN; the ac-

curacy for both pattern recognition algorithms stands above 98%, suggesting that PCA 

successfully extracts the most relevant information for classification in this dataset. On the 

other hand, the combinations with PARAFAC performed the lowest metrics, possibly be-

cause three-dimension analysis includes irrelevant information in the data rather than 

meaningful features, as shown in Figure 2b. 

 

Figure 3. Metrics comparison of all the classification models. 

4. Conclusions  

In this work, two feature extraction methods, PCA and PARAFAC, and two classifi-

cation techniques, ANN and k-NN, were compared to provide information about the pro-

cessing techniques to enhance the classification accuracy of the e-nose in predicting the 

eight types of tea and infusions instead off the conventional works where they focus on 

Classes
FE_1* FE_2** FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2 FE_1 FE_2

White 100 95 0 0 0 0 0 5 0 0 0 0 0 0 0 0 1.00 0.99

Spearmint 0 0 100 90 0 0 0 10 0 0 0 0 0 0 0 0 0.99 0.98

Hibiscus 0 0 3.3 0 90 73.3 0 3.3 0 13.3 0 6.6 6.6 3.3 0 0 0.99 0.97

Lemongrass 0 2.5 7.5 7.5 0 0 80 77.5 12.5 10 0 0 0 0 0 2.5 0.97 0.94

Mint 0 0 2 0 0 2 2 6 92 78 0 0 4 14 0 0 0.97 0.91

Chamomile 0 0 0 0 0 0 0 3.3 0 0 91.6 86.6 0 0 8.3 10 0.98 0.95

Black 0 0 0 0 0 0 0 0 0 16 0 0 100 84 0 0 0.99 0.95

Green 0 0 0 0 0 0 0 0 0 0 0 8.3 0 0 100 91.6 0.98 0.96

0.98 0.96

T
ru

e 
cl

as
s

Total
Predicted class

Chamomile Black Green Class. rate White Spearmint Hibiscus Lemongrass Mint



Eng. Proc. 2023, 4, x FOR PEER REVIEW 6 of 6 
 

 

one type of tea (black or green tea). The obtained classification results show that feature 

extraction by PCA has superior metrics than using PARAFAC components; this was cor-

roborated by the PCA-ANN combination that achieved the most remarkable accuracy. 

This fact is mainly related to particularities in the dataset, due to PARAFAC finding that 

one of the dimensions of the information (intensities) is not representative. Therefore, us-

ing only the variance as the main feature allows a better data evaluation. Although both 

techniques focused on discrimination tasks related to qualitative analyses, current results 

motivate the study of quantitative analyses of chemical species, considering the content 

of VOCs in tea. In this way, e-noses could be sensitive to the mixture of VOCs per tea, 

allowing their possible quantification from acquired MOXs signals. Combining an appro-

priate sensor array and a processing system, makes the e-noses competitive systems to 

evaluate and identify food products instead of the standard methods. The shift toward 

advanced sensory technologies underlines not only the importance of this research line, 

but also its potential for improving both qualitative and, in future works, a quantitative 

evaluation in the field of tea and herbal infusions classification. 
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