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1. Antimicrobial fungal effectors 3. Assembling a training dataset by manual curation
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Plant-associated fungi, including pathogens as well as mutualists, secrete small 
proteins, typically referred to as effectors, to support their colonization of host tissues 
by targeting plant and/or microbial components. Effectors with antimicrobial activities 
were demonstrated to play a key role in both disease development and suppression. 
They are used by pathogens to antagonize protective microbiota members [1,2,3], 
and by mycobiota members to restrain pathogen colonization [4]. However, their 
occurence and conservation throughout the fungal kingdom remain enigmatic.

Positive training set: 152 proteins demonstrated to have antimicrobial activity in vitro, manually curated based on literature.
Negative training set: 304 proteins expected not to have any antimicrobial activity according to their functional annotation
                                   (same lengths and organisms as in the positive set).
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4. Training pipeline
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*: Reduced alphabet based on amino acid 
properties: small (G,A), nucleophilic (S,T,C), 
hydrophobic (V,L,I,M,P), aromatic (F,Y,W), 
acidic (D,E), amide (N,Q) and basic (H,K,R).

AA= Amino acids
FDR= False discovery rate 

(Benjamini-Hochberg correction)
P/A= Presence/Absence

SVM= Support Vector Machines
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5. Classifier quality control

Classifier quality as estimated by leave-one-out cross-
validation: 
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Prediction:

Previously applied to short peptides
Antimicrobial activity predictors have previously been developed, but are
dedicated to short peptides, and therefore not suitable for fungal effectors.

e.g. AMPScanner [5] was trained on the APD3 database [6]:

2. Predicting antimicrobial activity of proteins with 
machine learning models

Aim:
(1) Training a model to classify proteins into 
two groups (   /   ), based on their sequence and 
structural properties (X, Y, Z,...).
(2) Use this model to discover new candidate
antimicrobial effectors in fungal genomes.
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7. Screening the AlphaFold database to discover novel 
antimicrobial effector families

We downloaded from the AlphaFold 
database [7] all the available structures for 
effector proteins produced by 
Sordariomycetes, then clustered them with 
Foldseek [8] using a 80% structural 
similarity threshold, and predicted their 
antimicrobial activity.

Biggest clusters with the highest 
probability values represent 15 candidate 
antimicrobial effector families with good 
conservation among Sordariomycetes, to 
further analyse and experimentally 
validate. These proteins are not (or poorly) 
functionally annotated.
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Our predictor reveals that one to two thirds of fungal 
secretomes may be composed of antimicrobial proteins.

6. Prediction of antimicrobial activities 
in fungal secretomes

*: These sections correspond to 
carbohydrate-active enzymes, excluded 
from predictions since poorly 
represented in our training set. 

Verticillium dahliae 
(plant pathogen, Ascomycete)

Rhizophagus irregularis 
(arbuscular mycorrhiza, Glomeromycete)

Coprinopsis cinerea 
(saprotroph, Basidiomycete)

336

297

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

C
ou

nt

*

Probability of antimicrobial activity

C
ou

nt
538

481
*

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

Probability of antimicrobial activity

C
ou

nt

674

457

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

Probability of antimicrobial activity

*

Antimicrobial
Non-antimicrobial

Prediction:


