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Abstract: The Mediterranean is recognized as one of the most sensitive regions regarding climate 13 

change. The northern sector winds are a dominant feature of summer low-tropospheric circulation 14 

over the Aegean basin in eastern Mediterranean (EMed). This study is an updated assessment that 15 

uses state-of-the-art tools in order to investigate the projected changes of the meridional wind speed 16 

and Etesian regime during summer period (June-July-August) over the 21st century. The analysis is 17 

based on 17 Global Climate Models simulations (GCMs) available from Coupled Model Intercom- 18 

parison Project Phase 6 (CMIP6) covering the historical period (from 1971 to 2014) and the future 19 

period (from 2015 to 2100) under two Shared Socioeconomic Pathways (SSPs), an intermediate and 20 

a very high emission scenario (SSP2-4.5 and SSP5-8.5). Additionally, results from GCMs analysis are 21 

compared to ERA5 reanalysis for the historical period from 1971 to 2000. Our findings suggest that 22 

the majority of GCMs reproduce the spatial pattern of Etesians but underestimate the meridional 23 

wind speed about 0.5 to 1.0 m/s, as compared to ERA5. During the future period, the meridional 24 

wind speed is projected to be increased over the Aegean basin, mainly during the last period of 21st 25 

century. Findings show that the majority of GCM simulations (12 out of 17) show an increase of 26 

meridional wind speed about 0.2 to 1.4 m/s for SSP5-8.5 and 0.2 to 0.6 m/s for SSP2-4.5, as compared 27 

to historical period from 1971 to 2000. 28 
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 30 

1. Introduction 31 

The Sixth Assessment Report (AR6) of IPCC [1] emphasizes the vulnerability of so- 32 

cieties on climate change highlighting the impact of global warming for our civilization. 33 

Mediterranean region warming is about 20% faster than the average earth system affect- 34 

ing many socioeconomic sectors [2,3]. One of the dominant tropospheric circulation fea- 35 

tures of Mediterranean is the Etesians, a permanent system of northerly winds [4]. Etesi- 36 

ans blow during the summer period showing the maximum sign during July-August 37 

months [5,6]. The main cause of this wind system is a pressure gradient over the Aegean 38 

Sea as a result of a high and a low pressure system located over Balkan Peninsula and 39 

south EMed. Additionally, the topography of continental Greece and the Bosporus cana- 40 

lizes the air masses which are advected from Caspian region to the Aegean basin [7,8].  41 

Past studies have already investigated the Etesian regime during past and future pe- 42 

riod using observations, reanalysis and model simulations data [4,5,7–10]. Dafka et al. [9] 43 

found that the intense Etesians are related with geopotential anomalies over northwest 44 
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Balkan Peninsula and the position of Jet stream. Other studies have shown that the varia- 45 

bility of Etesians are controlled by the activity of South Asian Monsson (SAM) [5,6] via 46 

the extension of thermal low from west SAM to south EMed [11]. Misios et al. [7], using 47 

model simulations over the last millennium and 20CR data, have shown that the reduction 48 

of Etesians is associated with the weak SAM activity after post-eruption summers. For the 49 

Future period, the Etesians strengthen due to the strengthening of high pressure center, 50 

and the deepening of thermal Low over EMEd [4]. Logothetis et al. [9] and Dafka et al., 51 

[12], have shown a strengthening of Etesians during the last period of 21st century accord- 52 

ing RCP8.5 scenario due to the enhancement of the dipole that sustains the Etesian regime. 53 

Our study investigates the projected changes of Etesian regime using state-of-the-art 54 

tools. Here, we investigate the Etesians in terms of meridional wind speed component at 55 

10m (v10) [6,13] using 17 model simulations available from the CMIP6 project under two 56 

SSPs (SSP2-4.5 and SSP5-8.5). 57 

2. Data and Methods 58 

For the analysis monthly mean v10 was used. The data is obtained from CMIP6 pro- 59 

ject [13] in the frame of IPCC-ΑR6 [1]. In the study data of 17 simulations was analyzed 60 

covering the period from 1971 to 2000 (historical) and from 2015 to 2100 for two future 61 

emission scenarios (SSP2-4.5 and SSP5-8.5) (Table 1). SSPs are developed in the frame of 62 

CMIP6 (AR6) and describe the different pathways of atmospheric greenhouse gas emis- 63 

sions. There are 5 SSPs, which combined with representative concentration pathways 64 

(RCPs), describe the possible climate change under social conditions and climate features 65 

[15]. In this study, the projected changes of v10 over EMed are investigated for a “medium 66 

challenges to mitigation and adaptation” scenario (SSP2) and a “high challenges to miti- 67 

gation, low challenges to adaptation” scenario (SSP5) [16]. For the CMIP6 simulations 68 

with more than one simulation available, the ensemble mean was computed. The v10 from 69 

ERA5 are retrieved during the period from 1971 to 2000, (hereafter hP) in order to compare 70 

model results to the reanalysis. The ERA5 data was retrieved in spatial resolution of 71 

1.0°x1.0° and the model simulations regrided (bi-linear interpolation) to the common res- 72 

olution. 73 

Table 1. List of CMIP6 model simulations that used in this study. 74 

Model Institute (country) 
Resolution 

(lon/lat) 
Ensemble 

ACCESS-CM2 
Australian Community Climate and Earth System Simulator Climate 

Model Version 2 (Australia) 
192 x 144 r1i1p1f1 

ACCESS-ESM1-5 
Australian Community Climate and Earth System Simulator Earth 

System Model Version 1.5 
192 x 145 

r1i1p1f1, 

r2i1p1f1, 

r3i1p1f1 

AWI-CM-1-1-MR 
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine 

Research 
384 x 192 r1i1p1f1 

CanESM5 
Canadian Centre for Climate Modelling and Analysis, Environment 

and Climate Change Canada 
128 x 64 r1i1p1f1 

CMCC-CM2-SR5 
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, 

Italy 
288 x 192 r1i1p1f1 

CNRM-CM6-1-HR 

Centre National de Recherches Meteorologiques, Centre Europeen 

de Recherche et de Formation Avancee en Calcul Scientifique, 

France 

256 x 128 r1i1p1f2 

GFDL-ESM4 
National Oceanic and Atmospheric Administration, Geophysical 

Fluid Dynamics Laboratory, USA 
360 x 180 r1i1p1f1 

GISS-E2-1-G Goddard Institute for Space Studies, USA 144 x 90 r1i1p1f2 
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HadGEM3-GC31-

LL 
Met Office Hadley Centre, UK 92 x 144 r1i1p1f3 

INM-CM5-0 
Institute for Numerical Mathematics, Russian Academy of Science, 

Russia 
180 x 120 r1i1p1f1 

IPSL-CM6A-LR Institut Pierre Simon Laplace, France 144 x 143 r2i1p1f1 

KACE-1-0-G 
National Institute of Meteorological Sciences/Korea Meteorological 

Administration, Climate Research Division, Republic of Korea 
192 x 144 r1i1p1f1 

MIROC6 
Japan Agency for Marine-Earth Science and Technology , The Uni-

versity of Tokyo, Japan 
256 x 128 r1i1p1f1 

MIROC-ES2L 
Japan Agency for Marine-Earth Science and Technology , The Uni-

versity of Tokyo, Japan 
128 x 64 r1i1p1f1 

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 384 x 192 r1i1p1f1 

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 192 x 96 r1i1p1f1 

MRI-ESM2-0 Meteorological Research Institute, Japan 128 x 64 r1i1p1f1 

 75 

The analysis is focused on a spatial window over EMed (17°E-31°E, 30°N-41°N; fol- 76 

lowing [6]) and also over the central Aegean Sea (cAeS) where the Etesian sign is maxim- 77 

ized (24°E-27°E, 36°N-39°N; [6]). In order to investigate the v10 spatial pattern of CMIP6 78 

simulations, the composite mean v10 maps during hP both for model simulations and 79 

ERA5 are constructed. Τhe bar-chart of the averaged v10 over cAeS both for simulations 80 

and reanalysis are calculated. Additionally, the agreement of averaged v10 over cAeS be- 81 

tween ERA5 and CMIP6 simulations is estimated using the bias ratio (
𝜇𝑠𝑖𝑚.

𝜇𝑜
 ) and the var- 82 

iability ratio (
𝑠𝑠𝑖𝑚.

𝜇𝑠𝑖𝑚.
⁄

𝑠𝑜
𝜇𝑜⁄

) where μ and s are the mean and standard deviation for simulations 83 

(sim.) and reanalysis (o), respectively [17].  84 

 To study the projected changes of v10 during future period, the bar-chart of the dif- 85 

ference of averaged v10 is calculated during two future periods (F2; 2071-2100 and F1; 86 

2031-2060) with reference to hP, both for SSP5-8.5 and SSP2-4.5 emission scenarios. Focus- 87 

ing on the future period with the most significant v10 changes, the maps of composite 88 

difference of v10 between F2 and F1 periods and hP according to SSPs and hP are con- 89 

structed. For the statistical significance, the two-tailed t-test was used at 95% statistical 90 

significance level. 91 

3. Results 92 

The mean v10 during the historical period from 1971 to 2000 (hP) for ERA5 and each 93 

one of the CMIP6 model simulations are shown in Figure 1 (please note that in Figure 1 94 

the spatial resolution for ERA5 is 0.25°x0.25° in order to show clearer the v10 pattern– 95 

Etesian regime over the Aegean Sea). The model simulations are regrided to 1.0°x1.0°. 96 

This analysis shows that the majority of simulations capture the spatial pattern of v10. 11 97 

out of 17 simulations reproduce the spatial pattern of Etesian flow over the cAeS (Figure 98 

1c-h,j,o-r). 99 
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 100 

Figure 1. Composite mean of v10 (m/s) during hP for (a) ERA5 and (b-r) model simulations. 101 

The averaged v10 over the cAeS for ERA5 and simulations are shown in Figure 2. 8 102 

out of 17 simulations, compared to reanalysis, capture the average v10. In particular, the 103 

averaged CMIP6 v10 over cAeS comes into the limits of the averaged ERA5 v10 over the 104 

cAeS plus/ minus one standard deviation of ERA5 v10 distribution (namely, the AWI-CM- 105 

1-1-MR, CNRM-CM6-1-HR, GFDL-ESM4, HadGEM3-GC31-LL, MIROC-ES2L, MPI- 106 

ESM1-2-HR, MPI-ESM1-2-LR and MRI-ESM2-0). 7 out of 17 simulations underestimate 107 

the average ERA5 v10 over cAeS about 0.8m/s (namely the ACCESS-CM2, ACCESS- 108 

ESM1-5, CanESM5, CMCC-CM2-SR5, GISS-E2-1, IPSL-CM6A-LR and MIROC6) and 2 109 

simulations show an underestimation about 1.6 to 1.9 m/s (INM-CM5-0 and KACE-1-0- 110 

G), respectively (Figure 2). Finally, AWI-CM-1-1-MR and MPI family simulations show 111 

better agreement with ERA5 v10 over cAeS in term of bias and variability ratio (Figure 112 

2b,c). 113 

 114 

Figure 2. Bar-chart of (a) averaged v10 over cAeS during the hP for ERA5 (red bar) and model sim- 115 
ulations (white bars), (b) bias ratio and (c) variability ratio for each simulation with reference to 116 
ERA5. 117 

The difference of the averaged v10 over cAeS during F2 and F1 with reference to the 118 

hP (both for SSP5-8.5 and SSP2-4.5) are presented in Figure 3. The main changes are pre- 119 

sented during the F2 (Figure 3.a,c). The SSP5-8.5 scenario shows the most significant 120 

changes compared to SSP2-4.5. According to SSP5-8.5, the maximum changes are pre- 121 

sented during the F2 (compared to hP; Figure 3a,b). In particular, 5 out of 11 simulations 122 

show a statistical significant increase in averaged v10 over cAeS about 0.2 to 1.4 m/s and 123 

4 (two simulations come from a common institute) out of 11 simulations show a significant 124 
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decrease about 0.3 to 0.6 m/s, respectively (Figure 3a). For the SSP2-4.5 scenario, 5 out of 125 

11 simulations show a significant increase in averaged v10 over cAeS about 0.2 to 0.6 m/s 126 

and two out of seventeen show a decrease about 0.3 m/s, respectively (Figure 3c). For the 127 

mid-21st century (F1) the averaged v10 changes over cAeS are not so significant as the last 128 

period of 21st century (Figure 3b,d). 129 

 130 

Figure 3. Bar-chart of the difference of averaged v10 (m/s) over cAeS during F2 and F1 with refer- 131 
ence to hP (a-b) SSP5-8.5 and (c-d) SSP2-4.5. The red/ blue bars indicate the statistical significant 132 
increase/ decrease of the averaged v10 (m/s) over cAeS at 95%. 133 

To further investigate the spatial changes of v10 over the EMed the composite differ- 134 

ence maps of v10 between F2 (according SSP5-8.5) and hP are constructed (Figure 4). The 135 

analysis is focused on the last period of 21st century (F2) because the most significant 136 

changes are presented during this period. The majority of model simulations show an 137 

increase of v10 over the Aegean except the south EMed where the v10 decreases about 0.1 138 

to 1.0 m/s. In 11 out of 17 simulations the v10 increases about 0.2 to 1.4 m/s over central 139 

Aegean (Figure 4c,d,f-h,l-q). Additionally, in 4 out of 17 the v10 decreases about 0.4 to 0.8 140 

m/s over southeastern Aegean basin (Figure 3a,b,i,e). The other simulations show insig- 141 

nificant changes (Figure 3j,k). 142 

 143 



Environ. Sci. Proc. 2023, 5, x FOR PEER REVIEW 6 of 4 
 

 

Figure 4. Mean composite difference of v10 (m/s) between F2 according SSP5-8.5 scenario and hP. 144 
The dotted area indicates the statistically significant change at 95%, as estimated using Student’s t- 145 
test. 146 

4. Conclusion 147 

This work aims to study the projected changes of Etesian sign over Aegean Sea using 148 

CMIP6 model simulations. The half of simulations studied here captures the mean v10 149 

over cAeS whereas the majority of the other simulations underestimate the v10. Compar- 150 

ing these findings with previous analysis [6] the results provide evidence that CMIP6 sim- 151 

ulations reproduce better the Etesian sign over the central Aegean compared to CMIP5 152 

simulations. Regarding future projections, the majority of simulations show stronger v10 153 

(about 0.2 to 1.4 m/s for SSP5-8.5) during the last period of 21st century over central Ae- 154 

gean. Additionally, all simulations show a decrease of v10 over south EMed. Finally, the 155 

further investigation of EMed atmospheric circulation, using a robust tool as the CMIP6 156 

simulations, could improve our knowledge to understand better the climate over the Med- 157 

iterranean “climate hot-spot”. 158 
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