The 2nd International Electronic Conference on Chemical Sensors and Analytical Chemistry

16–30 September 2023

CSAC 2023

Synthesis of carboxylated magnetite nanoparticles covalent conjugates with folic acid antibody FA-1 for lateral flow immunoassay

Maria Olegovna Zolotova^{1,2}, Sergey Leonidovich Znoyko¹, Alexey Vladimirovich Orlov¹, Petr Ivanovich Nikitin¹, Artem Vadimovich Sinolits (mighty-

mouser@yandex.ru)^{1,3}

¹Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

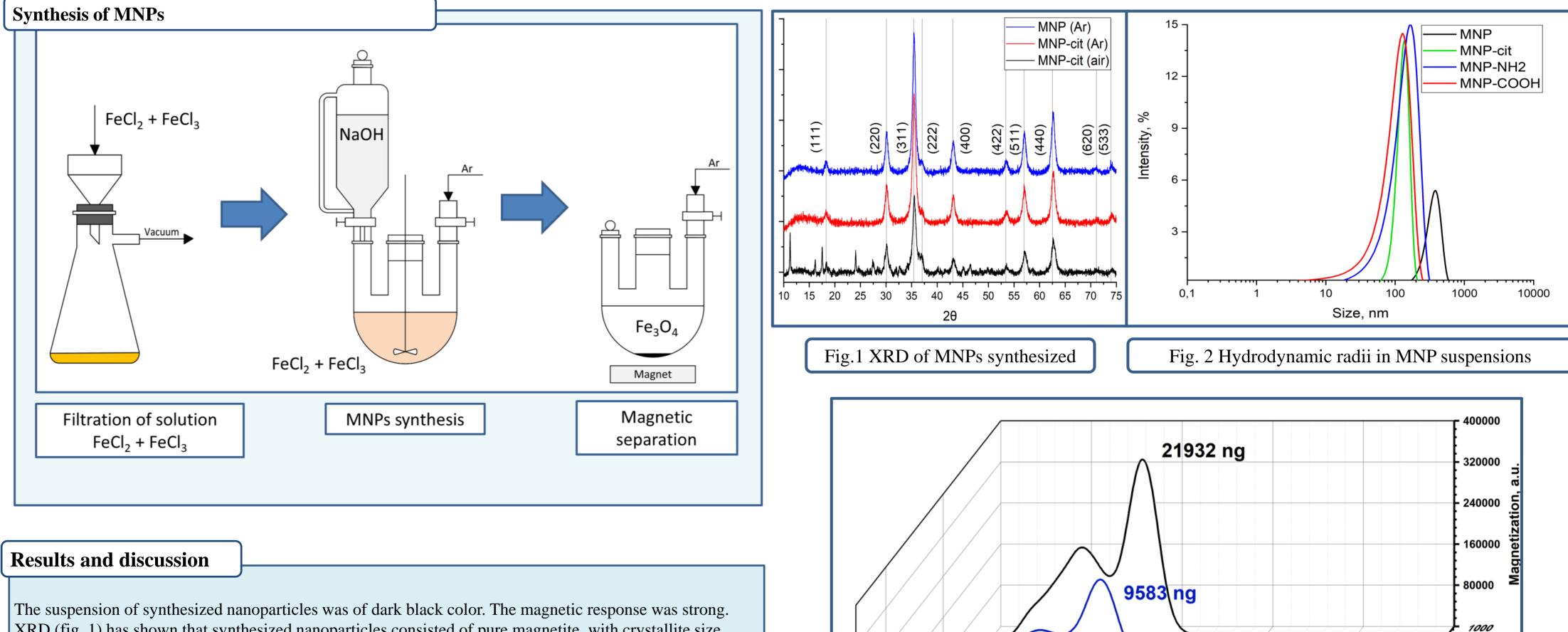
²Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia

³FSUE Federal center of nuclear medicine projects design and development of FMBA Russia, Moscow

Objectives

To obtain magnetite nanoparticles able to conjugate with folic acid antibodies covalently

Tasks


• Preparation of magnetite nanoparticles

- Functionalization of magnetite nanoparticles with amino- and carboxyl groups
- Conjugation of carboxylated magnetite nanoparticles with folic acid antibodies FA-1
- Testing and quantifying of bonding of magnetite nanoparticles conjugates with antibodies with folic acid with magnetometric assay

Introduction

Magnetite nanoparticles (MNPs) are quite preferable material for different bioassays[1] because of their quite low toxicity both for cells[2] and for mammals[3] and big variety of their surface functionalization approaches[4][5]. Superparamagnetic behavior provides an application of MNPs as magnetic labels both for cells[6] and for molecules[7]. Combination of MNPs optical properties at visible range with magnetic properties has been led into the fundament of magnetometric lateral flow immunoassay on test-stripes for rapid and sensitive qualitative and quantitative analysis of different biomolecules for which magnetic particle quantification (MPQ) technique has been developed earlier[8][9].

We have synthesized MNPs via simple and convenient co-precipitation method. Briefly, FeCl₂ and FeCl₃ were dissolved in degassed water in stoichiometric rate and filtered in order to exclude hydroxy- and oxychlorides that may act as undesirable and big crystallization centers due to their low solubility. The synthesis of MNPs was carried out by adding NaOH in degassed water solution to the mixture of FeCl₂ and FeCl₃ and stirred non-magnetically in order to minimize the formation of non-spherical structures, under argon atmosphere to prevent the MNPs from oxidation. MNPs were washed and stabilized with sodium citrate. Citrate-stabilized MNPs were modified stage-by-stage with tetraethoxysilane (TEOS), (3-Aminopropyl)triethoxysilane (APTES) and acylated with succinic anhydride resulting in carboxylated MNPs. Carboxylated MNPs were covalently bounded with folic acid antibody (FA-1) via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) by incubation of carboxylated MNPs with EDC, washing them and consequent incubation with FA-1. MNP-EDC-FA-1 suspension was mixed with albumin buffer solution in order to block the unreacted EDC and to simulate blood serum media. Porous test-stripes with folic acid-gelatin conjugates were put into MNP-EDC-FA-1 suspension and left for 15 min.

XRD (fig. 1) has shown that synthesized nanoparticles consisted of pure magnetite, with crystallite size about 12 nm, according to the Scherrer equation. Sodium citrate dihydrate peaks are observed on the

difractogram of MNP-cit synthesized in air atmosphere that may indicate it's excess on the MNP surface due to the insufficient washing of MNPs. Peaks corresponding to the magnetite are better pronounced when MNPs are synthesized in Ar atmosphere.

Hydrodynamic radii (fig. 2) of pristine MNPs agglomerates were about 380 nm and decreased to 136 nm after modification with sodium citrate. Carboxylation caused no sufficient resultant change in MNPs agglomerates size. ζ -potential has changed from neutral to -48 ± 7 mV after modification with sodium citrate that among with size decrease indicate stabilization of the suspension; turned to $+25\pm7$ mV after amination with APTES and to -25 ± 10 mV after acylation indicating that carboxylation was successful. The conjugation of MNP-EDC-FA-1 with folic acid was observed visually, and the magnetic signal was scanned through the test-stripe by MPQ-magnetometer. Visually, the line with folic acid-gelatin conjugate on the test-stripe has turned dark, with color intensity strongly depending on MNP-EDC-FA-1 concentration. MPQ has shown that the great majority of MNP-EDC-FA-1 was bounded with acid-gelatin conjugate. MPQ technique allowed quantifying down to 5 ng of MNP-EDC-FA-1 in this experiment with MNPs synthesized, with strong peak at the acid-gelatin conjugate line.

Conclusions

Synthesis of MNPs in Ar atmosphere allows obtaining MNPs without any other phases but magnetite. MNPs may serve both as a platform for immobilization of antibodies and a magnetic label for them. MPQ may be quite a precise tool for detection and quantitative analysis of MNPs, so the magnetometric lateral flow immunoassay is possible with use of them, for example, to quantify the interaction antibody-antigen.

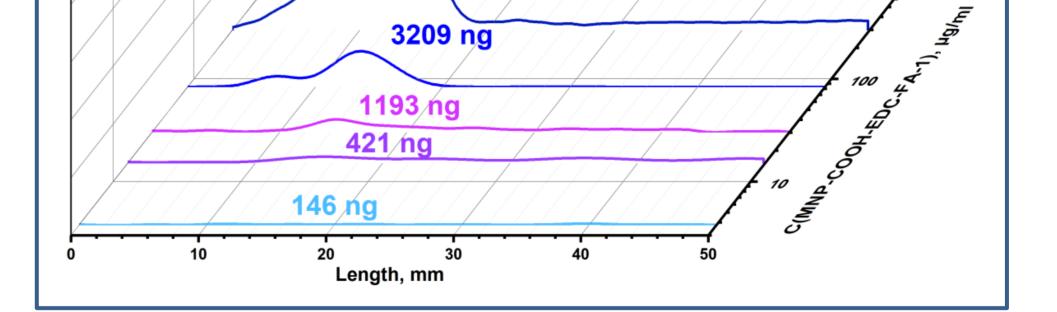


Fig. 3 Magnetograms of test stripes with MNP-COOH-EDC-FA-1 against FA-gelatin conjugates

References

1.Fleming C.L., Golzan M., Gunawan C., McGrath K.C. Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research // Glob. Challenges. 2023. Vol. 7, № 1.

2.Mahmoudi M., Simchi A., Milani A.S., Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles // J. Colloid Interface Sci. Elsevier Inc., 2009. Vol. 336, № 2. P. 510–518.

3.Rocha J.M.V., de Souza V.B., Panunto P.C., Nicolosi J.S., da Silva E. do N., Cadore S., Londono O.M., Muraca D., Tancredi P., de Brot M., Nadruz W., Ruiz A.L.T.G., Knobel M., Schenka A.A. In vitro and in vivo acute toxicity of a novel citrate-coated magnetite nanoparticle // PLoS One. 2022. Vol. 17, № 11 November. P. 1–16.

4.Popescu R.C., Andronescu E., Vasile B.S. Recent advances in magnetite nanoparticle functionalization for nanomedicine // Nanomaterials. 2019. Vol. 9, № 12. P. 1–31. 5.Nguyen M.D., Tran H.-V., Xu S., Lee T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications // Appl. Sci. 2021. Vol. 11, № 23. P. 11301.

6. Ito A., Kamihira M. Tissue engineering using magnetite nanoparticles // Progress in Molecular Biology and Translational Science. 1st ed. Elsevier Inc., 2011. Vol. 104. 355–395 p.

7.Mabarroh N., Alfansuri T., Aji Wibowo N., Imani Istiqomah N., Marsel Tumbelaka R., Suharyadi E. Detection of green-synthesized magnetite nanoparticles using spinvalve GMR-based sensor and their potential as magnetic labels // J. Magn. Mater. 2022. Vol. 560. P. 169645.

8.Pushkarev A. V., Orlov A. V., Znoyko S.L., Bragina V.A., Nikitin P.I. Rapid and easy-to-use method for accurate characterization of target binding and kinetics of magnetic particle bioconjugates for biosensing // Sensors. 2021. Vol. 21, No 8.

9.Guteneva N. V., Znoyko S.L., Orlov A. V., Nikitin M.P., Nikitin P.I. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse // Microchim. Acta. Microchimica Acta, 2019. Vol. 186, Nº 9.