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Abstract: The utilization of tower cranes at construction sites entails inherent risks, notably the po- 8 

tential for loads to fall. This study proposes a novel method for identifying the tower crane load fall 9 

zone and determining workers' locations relative to this zone. Previous studies have failed to accu- 10 

rately identify the load fall zone, mainly due to the difficulties in detecting various types of crane 11 

loads. This study presents a method that uses computer vision algorithms to detect crane loads 12 

based on their movement patterns and elevation, while also employing the YOLOv7 deep learning 13 

algorithm to detect workers and using stereo camera depth data to measure their positions in the 14 

3D world coordinate system. The proposed method outperforms prior approaches in terms of anal- 15 

ysis speed and accuracy, achieving a speed of 8 frames per second and 94% precision and 96.5% 16 

recall in determining workers’ relative zone. 17 
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1. Introduction 20 

Construction is a high-risk activity that takes place in complex environments. Con- 21 

sequently, the construction industry experiences a high fatality rate. Many of these inju- 22 

ries and fatalities can be attributed to the use of cranes, which are extensively employed 23 

on construction sites [1]. In the United States, between 2011 and 2017, 297 fatal crane- 24 

related accidents were reported [2]. Among these incidents, 154 cases resulted from con- 25 

tact accidents, with 79 of them specifically involving the fall of crane loads [2]. Hence, the 26 

occurrence of crane load fall, accounts for more than 25% of all crane-related fatalities. 27 

Restricting access to hazardous crane areas is a fundamental measure that can be taken to 28 

prevent or mitigate the impact of loads falling [3]. 29 

The Occupational Safety and Health Administration (OSHA) defines the fall zone as 30 

the area including but not limited to the area directly beneath the load where there is a 31 

foreseeable possibility of suspended materials falling [4]. The OSHA 1926.1425 standard 32 

explicitly prohibits individuals from being present beneath a suspended load [4]. Simi- 33 

larly, the BS-EN-ISO-13857 standard recommends maintaining a safety distance of 1.5 me- 34 

ters from high-risk areas, including the crane load fall zone [5]. Automated safety systems, 35 

particularly those based on computer vision, have demonstrated promising potential for 36 

enhancing safety [6]. This study explores a computer vision and deep learning approach 37 

to accurately determine the relative location of individuals in relation to the tower crane 38 

load fall zone, which is validated through a carefully designed and executed experiment. 39 

In the following sections of this paper, a review of the literature on crane safety im- 40 

provement is presented in section 2. Section 3 provides an explanation of the methodology 41 

employed in this study. The experiment and its findings are presented in section 4. Section 42 

5 is dedicated to the discussion of the results, and section 6 encompasses the conclusions 43 

drawn from the research. 44 
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2. Literature Review 1 

Previous studies have focused on enhancing crane safety through the implementa- 2 

tion of various technologies, including sensors, scanners, and computer vision [7]. How- 3 

ever, in recent years, there has been a growing trend toward the use of computer vision 4 

technology for crane safety monitoring [6]. This literature review explores the research 5 

conducted in this area. 6 

One of the objectives of previous studies has been to alleviate crane collisions with 7 

site entities. Zhang and Ge [8] proposed a deep learning algorithm, FairMOT, to predict 8 

the trajectories of individuals and crane loads in a 2D image space. Yang et al. [9] used the 9 

Mask R-CNN to detect individuals and crane hook. They calculate the distances between 10 

these entities to prevent collision. Chen et al. [10] examined the use of terrestrial laser scan- 11 

ning to produce a 3D point cloud and prevent crane collisions with modeled objects. 12 

In addition to addressing crane collision prevention, computer vision technology has 13 

also been used to assist operators. Li et al. [11] developed an automatic system that uses 14 

robots and computer vision to attach loads to the crane hook. Wang et al. [12] trained a deep 15 

learning algorithm to interpret hand signals for crane steering. Other research [13, 14] has 16 

aimed to determine the precise location of the load during blind lifts, where the exact posi- 17 

tion of the load is unknown due to swaying. These studies used color-based identification 18 

techniques to detect the load. However, in real conditions, loads often have colors similar to 19 

the background, making color-based identification challenging. Yoshida et al. [15] demon- 20 

strated the feasibility of using a stereo vision system to detect the load location. 21 

The identification of crane loads and their related hazardous areas has also been a topic 22 

of interest in previous research. Zhou et al. [16] used the Faster R-CNN algorithm to identify 23 

all objects that were in the shape of a cube as possible crane loads. Their research showed 24 

that the deep learning algorithms alone, was not able to distinguish between cuboid loads 25 

and other similar objects in the construction site. Chian et al. [17] proposed a method for 26 

estimating the tower crane load fall zone. Their method uses the homography matrix to 27 

transfer a grid of points from the project plan to the camera images. However, this method 28 

is only accurate if the construction site is a flat plane. In reality, the site is not a plane, which 29 

can cause parallax problem and errors in the identification of the fall zone. In order to solve 30 

the problems of previous research, the current research proposes a new method for moni- 31 

toring the crane load fall zone and determining the presence of people under the load. 32 

3. Methodology 33 

The proposed algorithm consists of four main components, which are presented in 34 

the subsequent subsections: (1) depth extraction: A stereo camera system is used to extract 35 

depth information from the scene. (2) load detection: The crane load is recognized based 36 

on its movement patterns and elevation. (3) worker detection: The YOLOv7 algorithm is 37 

used to detect people in the scene. (4) location comparison: The location of people is com- 38 

pared to the location of the load fall zone in the scene. If a person is in the load fall zone, 39 

an alarm can be triggered to warn the person of the danger. 40 

3.1. Depth extraction 41 

Depth information is a necessary input for the load detection algorithm. It is also 42 

necessary to determine the location of people and the load fall zone in the 3D world coor- 43 

dinate system. Depth calculation using a stereo vision system is a well-established method 44 

for fast and accurate depth estimation [15]. Stereo vision is a technique that uses the dif- 45 

ference between two or more stereo images to recover the three-dimensional structure of 46 

a scene [15]. The stereo vision system used in this study is a stereo normal case that con- 47 

sists of two cameras and provides disparity. Disparity is the difference in the image coor- 48 

dinates of the corresponding points in two stereo images. The relationship between dis- 49 

parity and depth is expressed in eq. (1) [18]. The disparity map was calculated using the 50 

StereoBM class of the OpenCV library [19]. 51 
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Disparity = x − x′ =
Bf

z
, (1) 

In eq. (1), x is the vertical coordinate of the point in the left image. x' is the vertical coordi- 1 

nate of the point in the right image. f is the focal length of the camera and B is the baseline 2 

distance between the two cameras and z is the depth of the point in three-dimensional 3 

space. 4 

3.2. Load detection 5 

Crane load detection is a more challenging task than regular object detection. The 6 

load is defined by the act of carrying it by the crane, rather than its visual appearance. 7 

Relying solely on the visual features of the load leads to limited results and makes it dif- 8 

ficult to distinguish the load from other similar entities at the construction site [16]. In this 9 

study, a novel method for crane load detection was developed based on the movement 10 

pattern and height of the load. These two features define the load. As every load carried 11 

by a crane needs to be lifted from the surface below it and moved. 12 

Detecting moving objects in a video is a common problem in computer vision [6]. 13 

However, detecting objects that move differently from the background is a different prob- 14 

lem. When it is necessary to detect an object static with respect to the camera while the 15 

camera is moving, another method is needed. Optical flow is a two-dimensional vector 16 

that shows the movement of a specific point between two consecutive frames [20] and is 17 

a suitable criterion for identifying objects with different movements. The prerequisite for 18 

an object to be identified as a possible load is that it moves differently from the back- 19 

ground. The optical flow in this study was calculated using the Lucas-Kanade algorithm 20 

[20] and then densely calculated using the interpolation technique for all pixels. By speci- 21 

fying pixels with different optical flow, objects with different motions can be identified. 22 

The height difference between the load and the underlying surface is a crucial factor 23 

to consider. By comparing the depth of candidate objects and the surrounding surface 24 

within a radius of 1.5 times, it can be determined whether the object is suspended. A dif- 25 

ference of 2 meters is considered the necessary distance for an object to be classified as 26 

suspended. When an object is suspended and exhibits different movement characteristics, 27 

it is considered as a load. 28 

3.3. People detection 29 

Identifying individuals from a high height with an almost vertical viewing angle is a 30 

challenging issue because classical algorithms depend on appearance features that are 31 

mostly absent [8]. In addition, the size of the people in the photos is very small. To over- 32 

come these challenges, this study employed the YOLOv7 algorithm [21], which was pre- 33 

trained on the COCO image database [22], to detect people with high accuracy. 34 

Transfer learning of the YOLOv7 algorithm was performed using 120 images. Due to 35 

the small size of the database, the backbone layers of the pre-trained model, which are the 36 

first 50 layers, were frozen to avoid overfitting on a small amount of data. 37 

3.4. Comparison of locations 38 

The last step involves comparing the location of the individuals and the load fall 39 

zone. This study represents the first instance of such a comparison conducted in the 3D 40 

world coordinate system. Using eq. (2) and depth measurements, the 3D coordinate and 41 

true size of the objects can be determined, allowing for comparison in the world coordi- 42 

nate system. 43 

𝑥

𝑋
=

𝑦

𝑌
=

𝑟

𝑅
= 𝑐.

𝑓

𝑍
 , (2) 

Equation (2) employs the focal length (f), depth (z), and a constant for unit matching (c) 44 

to convert point image coordinates (x, y) to 3D world coordinates (X, Y), and the image 45 

size of objects (r) to its actual size (R). 46 
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 Upon conducting the comparison of worker locations with the load fall zone, the 1 

worker locations are classified into three distinct zones: the red zone, which is directly 2 

beneath the load and is deemed off-limits to all personnel, the yellow zone, which is situ- 3 

ated 1.5 meters away from the red zone and is only accessible to individuals involved in 4 

the operation, and the green/safe zone, which is situated outside these two zones. 5 

4. Experiment 6 

A field experiment was conducted to validate the proposed method, encompassing 7 

all loads handling scenarios at a height of 13 meters. To ensure that the test conditions 8 

closely resembled the actual working environment of the crane, a crane model was de- 9 

signed and fabricated. The length of the model boom was set at 3 meters to provide an 10 

adequate distance for the cameras from the load. Also, a stereo system comprising two 11 

calibrated smart phone cameras spaced at 18 cm was developed to capture videos. 12 

The person’s zone is the key variable and the ultimate outcome of this study. Preci- 13 

sion and recall rate were used to assess the model’s performance in determining the per- 14 

son’s zone. The ground truth zone is documented by communicating with the individual 15 

under load and during the test execution. The confusion matrix related to determining the 16 

person's zone is presented in Table 1, which also reports the precision and recall rates for 17 

each zone. Figure 1 provides an example of the algorithm analysis results, revealing the 18 

precise detection of the load and the person. The person’s zone is classified into three cat- 19 

egories: red, yellow, and green, based on a comparison of their location with the fall zone’s 20 

center point and the load’s dimensions. 21 
Table 1. Experiment confusion matrix and precision and recall rates for each zone. 22 

Confusion matrix Accuracy 

GT\Predicted Red Yellow Green Not Precision (%) Recall (%) 

Red 175 1 0 11 97 94 

Yellow 5 99 0 0 92 95 

Green 0 8 234 0 100 97 

Not 0 0 0 76 87 100 

Average 94 96.5 

 23 

   

(a) (b) (c) 

Figure 1. Examples of the results of the experiment. (a) Person within fall zone; (b) Person is situated 24 
in the yellow zone and at a distance of one meter from the red zone; (c) Person located in a safe zone. 25 

5. Discussion 26 

The proposed model demonstrated high accuracy, as indicated by its 94% precision 27 

and 96.5% recall. The experiments were analyzed using a computer equipped with an 28 
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Intel Core i7-9750H CPU, 8 GB RAM, and NVIDIA GeForce GTX 1650 GPU. The algorithm 1 

runs at a speed of 8 frames per second. This execution speed determines the worker's zone 2 

almost in real time, making it suitable for monitoring the load fall zone and issuing a 3 

warning of worker presence in the red zone if needed. 4 

The proposed method surpasses previous approaches in multiple key aspects. First, 5 

it is highly cost-effective because of its minimum physical equipment requirement. Sec- 6 

ond, it eliminates the reliance on unrealistic assumptions, such as assuming that the entire 7 

site surface is flat or that the camera is permanently fixed. This greatly enhances its prac- 8 

tical use in construction sites. Third, the algorithm operates at a high speed of 8 frames 9 

per second, with an impressive 94% precision and 96.5% recall in detecting the worker’s 10 

zone. This highlights the method's exceptional performance and reliability, surpassing 11 

previous models that identified only a limited set of load types [17] and a maximum speed 12 

of 1 frame per second [8]. Finally, the method’s ability to provide continuous service with- 13 

out human intervention sets it apart from traditional methods that rely on human power 14 

for safety monitoring, reducing the likelihood of errors and improving overall efficiency. 15 

Computer vision-based solutions have one limitation: the inability to function effec- 16 

tively in situations where the subject is occluded. This issue can be avoided to a large 17 

extent by determining the appropriate location for the cameras on the crane boom. How- 18 

ever, in blind operations, occlusion may occur when the obstacle is very close to the load 19 

and its dimensions are significant compared with the height of the crane. 20 

6. Conclusion 21 

The present study introduces a novel approach to monitor the presence of individu- 22 

als within the crane load fall zone, which is a critical issue in the construction industry 23 

due to legal emphasis and hazardous conditions. Crane safety has been the subject of ex- 24 

tensive research. However, the practical application of past methods is restricted due to 25 

the cost and assumptions associated with them. This study proposes a method that uses 26 

stereo vision to extract image depth information, computer vision algorithms to detect the 27 

load, and the YOLOv7 deep learning algorithm to identify individuals. By comparing the 28 

location of individuals and the load fall zone in the world coordinate system, the zone of 29 

individuals is classified into three categories (red, yellow, and green) based on predefined 30 

rules. The key accomplishments of this research are as follows: (1) propose a novel ap- 31 

proach for the detection of the crane load fall zone and the determination of workers’ 32 

positions relative to it. (2) develop a new algorithm that enables load detection irrespec- 33 

tive of its type, shape, color, and size. (3) fine-tune the YOLOv7 deep learning algorithm 34 

to accurately identify workers from the altitude of the crane. (4) construct a laboratory 35 

model of a crane to facilitate the testing of the proposed method. 36 

In conclusion, the method presented in this study achieves 94% precision, 96.5% re- 37 

call and an analysis speed of 8 frames per second, making it an accurate and fast solution 38 

that can be used in real-world conditions. This system can provide valuable information 39 

about the safe behavior of workers to safety managers. 40 
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