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Abstract: The inherent complexity of the Raman spectra of biomedical samples reflects the intricate 
molecular composition and intermolecular interactions of these diverse systems. Unraveling the 
complexities of biological Raman spectra is essential for bioscience and bioengineering research be-
cause it provides insight into cellular processes, disease states, and drug interactions. For the effec-
tive analysis of such complex data, robust and cutting-edge software is required that provides so-
phisticated algorithms for data preprocessing, thereby enhancing signal-to-noise ratio and revealing 
hidden spectral information. In addition, novel applications of this type may include machine learn-
ing algorithms for automated clustering analysis, enabling the identification of biomolecules and 
their conformational changes in diverse biological specimens. We present a Python 3 package built 
around popular scientific Python libraries that aims to provide Raman spectroscopists with user-
friendly programming tools for the analysis of complex biomedical Raman data. 
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1. Introduction 
Raman spectroscopy is a type of vibrational spectroscopy that relies on the inelastic 

scattering of light (Raman scattering) upon its interaction with the vibrational modes of a 
Raman-active molecule. It is a technique that is widely used because it allows for the non-
destructive study and molecular characterization of both organic and inorganic materials, 
in either solid or liquid state or in solutions, with minimal to no preparation prior to meas-
urement [1]. The ability to perform rapid measurements and the low interference from 
water molecules make it an excellent technique for studying wet tissues and also suitable 
for in vivo measurements [2]. Raman spectra contain characteristic vibrational infor-
mation that can be used for the identification and quantification of compounds present in 
a sample, as well as for the determination of its chemical composition. This information 
provides, in essence, the molecular fingerprint of the substance. Due to its versatility, ease 
of use, and ability to provide both qualitative and quantitative results, Raman spectros-
copy has evolved to a valuable analytical tool in biomedical applications. 

Raman scattering is a weak phenomenon, with only a fraction of the photons incident 
to a substance undergoing Raman scattering. This results in the signal being weak and 
hard to distinguish from background noise, which can occur due to the instruments and 
detectors used, the environment, and sample impurities among other factors [3]. Addi-
tionally, Raman spectra are influenced by fluorescent molecules that are present in a sam-
ple. This influence has the form of background signal, which can be stronger than the 
Raman signal and overlaps with it, obscuring and deforming the Raman peaks [4]. Both 
factors can lead to spectra with low signal-to-noise ratio (SNR). 

Addressing the issue of fluorescence background in biological samples may require 
several strategies. These include selecting an appropriate excitation wavelength, using the 
anti-Stokes segment of a Raman spectrum, and utilizing techniques such as photobleach-
ing, in which the sample is subjected to prolonged irradiation. However, it is worth noting 
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that the latter approach is not commonly employed with biological samples mostly due 
to the fact that photobleaching may harm the samples due to the high radiation intensity 
required and the extended duration of irradiation [5]. As a standard practice, computa-
tional techniques are employed to denoise and eliminate the fluorescence background 
from Raman spectra. This procedure, commonly referred to as “preprocessing”, is under-
taken with the objective of enhancing SNR before engaging in further analysis [6]. 

Here we present a Python 3 package built around some of the most popular scientific 
Python libraries that aims to provide Raman spectroscopists with user-friendly program-
ming tools for the preprocessing and analysis of complex biomedical Raman data. To 
briefly demonstrate the package’s usage, we will use Raman spectra of bone, collected 
from the tibias of healthy and osteoporotic rabbits. 

2. Materials and Methods 
2.1. Python Package Overview 

Written for Python 3.7 and later versions, the code allows the user to preprocess Ra-
man spectra and deconvolute complex Raman bands, as well as apply Principal Compo-
nents Analysis (PCA) and Partial Least Squares Regression (PLSR) to Raman data. The 
package is primarily developed to be run in Jupyter Notebooks and depends on pandas 
1.0+ [7], matplotlib 3.0+ [8], NumPy 1.19+ [9], seaborn 0.11+ [10], SciPy 1.5.0+ [11], scikit-
learn 0.23+ [12], and Rohan Isaac’s (rohanisaac) spc module [13]. 

The core component of the code is the Pandas dataframe. Dataframes are versatile 
data structures that provide methods for reading from and writing to various file types, 
as well as a significant number of methods that allow for advanced data manipulation 
and visual representation. Although they may lack in terms of processing speed and 
memory efficiency when compared to NumPy arrays, pandas dataframes in combination 
with Jupyter Notebooks offer great data inspection capabilities and interactivity, which is 
of utmost importance when performing exploratory data analysis, as usually required in 
Raman spectroscopy. They also allow for easily performing batch-processing actions on 
spectra, which is essential when handling large amounts of data, such the ones usually 
obtained from Raman experiments. 

The package contains methods for file operations on Raman data and for prepro-
cessing spectra. The preprocessing functionalities contain methods for despiking and 
smoothing spectra, interpolating, differentiating, background subtraction using the SNIP 
algorithm [14], and various normalization options. All preprocessing methods are availa-
ble for use on either NumPy arrays or pandas dataframes. Additionally, classes for clus-
tering analysis and modeling have been implemented. More specifically, the package in-
cludes a Principal Components Analysis (PCA) class built around the decomposition.PCA 
scikit-learn class and a Partial Least Squares (PLS) class built around the cross_decompo-
sition.PLSRegression scikit-learn class. Both classes can also be used for dimensionality 
reduction and provide methods that facilitate the creation of publication-ready visualiza-
tions. The PLS class can also be used both for regression (PLSR) and two-class discrimi-
nant analysis (PLS-DA). Finally, a peak deconvolution module is included that allows for 
fitting complex Raman bands with Gaussian or Lorentzian functions, allowing for the ex-
traction of additional information from Raman spectra. 

2.2. Samples 
Samples were obtained from the left tibias of 5 healthy and both the right and left 

tibias of 2 osteoporotic, 8 months old, female New Zealand rabbits. Inflammation-medi-
ated osteoporosis was induced to the osteoporotic rabbits by following the method de-
scribed by Kourkoumelis et al. [15]. Six slices were obtained from the diaphyses (mainly 
consisting of cortical bone) of each tibia, symmetrically towards the proximal and distal 
epiphyses. Raman spectra from three different points of the transverse surface of each 
slice, separated approximately by 120°, were obtained using a BWTEK i-Raman Plus 
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spectrometer, operating at 785 nm, with a power output of 200 mW at the probe and signal 
collection time of 6 s. In total, 36 healthy and 36 osteoporotic Raman spectra were col-
lected. 

3. Discussion 
The required preprocessing steps and the subsequent application of PCA will be 

briefly described. Both healthy and osteoporotic rabbit spectra were combined in a single 
dataframe with the Raman shift as the dataframe’s index and the sample names as the 
dataframe’s columns. The spectra were subsequently cropped to the 380–1800 cm−1 region 
(fingerprint region), treated to remove spikes that may have occurred mainly due to cos-
mic rays and detector artifacts, and smoothed using a Savitzky-Golay filter. The fluores-
cence background of each spectrum was then calculated using the SNIP algorithm and 
each calculated background was subtracted from the respective spectrum. Normalization 
of each spectrum to the maximum intensity of the respective phosphate (v1 PO4−3) Raman 
peak between 955 cm−1 and 965 cm−1 [16], concludes the preprocessing procedure, leading 
to spectra with good SNR and most of the fluorescence background removed. Prepro-
cessing is a crucial step in Raman analysis and the quality of the subsequent results 
strongly depends on it. 

The programmed PCA class was then employed as a technique for the discrimination 
of the two bone classes (healthy and osteoporotic). The result of PCA is displayed in a 
summarizing plot that contains a scree plot, the loadings plots for the first three principal 
components (PCs) and a 3 by 3 plot containing PC scores plots for the non-diagonal ele-
ments and kernel density estimate (KDE) plots for the diagonal elements (Figure 1). The 
PC scores plots also include the 95% confidence ellipses of each sample class. The scree 
plot indicates that the first three PCs explain most of the observed variance of the data 
(77.91%). Adding more than three PCs does not represent a significant contribution to the 
total variance. The PC1-PC2 and PC2-PC3 scores plots show clear discrimination of the 
healthy and osteoporotic samples along the PC2 axis. This is also especially obvious in the 
KDE plots, where the PC2 KDE distributions for the healthy and osteoporotic samples are 
clearly discriminated, while the KDE plots for PC1 and PC3 overlap heavily. 

 
Figure 1. PCA summary plot containing a scree plot and the first three PC loadings scores plots. The 
shaded ellipses represent the 95% confidence ellipses of the classes, colored with their respective 
colors. The diagonal elements of the scores plots are the kernel density estimate (KDE) plots of the 
respective PC. 
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4. Conclusions 
In this paper we presented a Python 3 package that utilizes popular scientific Python 

libraries with the goal of providing Raman scientists a user-friendly but mostly versatile 
and expandable programming tool for preprocessing and analyzing Raman data. Using 
Raman spectra of healthy and osteoporotic rabbit bones, we briefly described the basic 
functionality of the package and showed how it can be used to apply principal compo-
nents analysis under a concise scheme of relevant scores and loadings plots. 
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