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Abstract: Ensuring access to safe drinking water is a critical concern, particularly in regions with 

limited resources. This study evaluates groundwater potability using a range of machine learning 

models, including logistic regression, K-Nearest Neighbors (KNN), Support Vector Classifier (SVC), 

and Random Forest, as well as deep learning models such as Artificial Neural Networks (ANN), 

Convolutional Neural Networks (CNN), Feedforward Neural Networks (FNN), and Long Short-

Term Memory (LSTM). We collected thirty groundwater samples from residential and industrial 

locations in Jaen, Kano State, Nigeria, focusing on nine crucial physicochemical parameters: electric 

conductivity, pH, total dissolved solids, calcium, magnesium, chloride, zinc, manganese, and cop-

per. Machine learning models, such as logistic regression and random forest, achieved accuracy 

scores of 0.833. They were closely followed by deep learning models, such as ANN with an accuracy 

score of 0.833, and LSTM, which scored 0.666. KNN and SVC provided moderately accurate predic-

tions, scoring 0.667, while CNN and FNN achieved lower scores of 0.333 and 0.5, respectively. This 

study represents a significant step toward ensuring safe drinking water for communities and pre-

serving the sustainability of natural resources. 

Keywords: groundwater; artificial intelligence; machine learning; deep learning; classification, lo-

gistic regression, random forest, artificial neural network, convolutional neural network 

1. Introduction 

Groundwater serves as a vital source of drinking water worldwide. To ensure the 

safety and purity of groundwater for domestic use, it is imperative to regularly assess its 

quality, a crucial step in enhancing the well-being of the growing global population [1]. 

Safe drinking water is a critical component of public health and environmental sustaina-

bility. Access to clean and potable groundwater is critical, especially in limited resources 

areas. In many of these places, numerous physicochemical parameters might impair 

groundwater quality, providing serious health hazards to residents. Traditional methods 

of determining groundwater potability require time-consuming and expensive laboratory 

studies. Moreover, the ground water quality can also be affected depending upon the type 

of pumping technique employed [2]. Several researchers have employed various tech-

niques to assess the quality of groundwater for drinking purposes. For instance, multi-

variate statistics [3], automatic exponential smoothing model [4], explanatory analysis [5], 

theoretical probability models [6, 7], correlation and regression analyses [8], and other 

methods. However, groundwater quality is influenced by a complex interplay of physi-

cochemical parameters, including electric conductivity (EC), pH, total dissolved solids 

(TDS), and concentrations of various ions and minerals. Ensuring the safety of this vital 
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resource necessitates the development of reliable predictive models that can rapidly and 

accurately classify groundwater samples as potable or non-potable. 

The introduction of machine learning and deep learning techniques has opened new 

paths for efficient, accurate, and cost-effective potability prediction. These techniques 

have emerged as powerful tools, offering the potential to enhance and complement tradi-

tional methods for more accurate and efficient evaluation. While deep learning techniques 

have been widely used in computer vision applications, such as Optical Character Recog-

nition (OCR) [9], face and skin detection/recognition [10, 11], visual pattern classification 

[12], and image classification [13], limited work has been done in the domain of water 

quality evaluation [14, 15]. This study embarks on a comprehensive evaluation of machine 

learning and deep learning models for groundwater potability classification. We explore 

the efficacy of machine learning models, such as logistic regression, K-Nearest Neighbors 

(KNN), Support Vector Classifier (SVC), and Random Forest, alongside deep learning 

models, including Artificial Neural Networks (ANN), Convolutional Neural Networks 

(CNN), Feedforward Neural Networks (FNN), and Long Short-Term Memory (LSTM). 

These models are applied to groundwater samples collected from both industrial and res-

idential locations, with a specific focus on nine important physicochemical parameters. 

The primary aim of this study is to identify the most effective machine learning mod-

els for this specific task. The motivation behind this research lies in the fundamental im-

portance of safe and potable groundwater for public health and sustainable water re-

source management, particularly where water scarcity and contamination are pressing 

concerns. Therefore, by evaluating and comparing machine learning models, this research 

offers a novel and practical approach to groundwater potability prediction, bridging the 

gap between data science and real-world challenges in water resource management and 

public health. 

This paper is outlined as follows: Section 2 contains the materials and methods. Sec-

tion 3 provides results and discussion. Section 4 gives the concluding remarks. 

2. Materials and Methods 

In this section, we investigate classification algorithms based on machine learning 

and deep learning and evaluate their effectiveness in classifying groundwater potability. 

Among the machine learning algorithms are logistic regression, KNN, SVC, and Random 

Forest. Deep learning models, on the other hand, include the ANN, CNN, FNN, and 

LSTM. The performance of each model was evaluated based on key metrics, including 

accuracy, precision, recall, and F1-Score. These metrics provide insights into the models' 

ability to classify groundwater samples correctly and are indicative of their overall per-

formance.  Python is used for all computations, training, and testing. The general 

flowchart of the investigation is depicted in Figure 1. 

 

 

Figure 1. Study flowchart. 
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2.1. Water Sampling and Data Preprocessing 

Thirty groundwater samples were randomly taken from open wells and boreholes in 

both industrial and residential areas during the study that was carried out in August 2020 

in Jaen, Kano State, Nigeria. The Geographical Positioning System (GPS) was used to lo-

cate the sampling stations by determining their latitude and longitude coordinates. Fol-

lowing standard procedures, these samples were then meticulously maintained in sterile 

plastic bottles and kept in an icebox. For each groundwater sample, fifteen physicochem-

ical parameters were measured. In this study, we are specifically focusing on nine of these 

parameters, such as electric conductivity (EC), pH, total dissolved solids (TDS), calcium, 

magnesium, chloride, zinc, manganese, and copper. Most of the parameters were ex-

pressed in milligrams per liter (mg/L), except for EC (µS/cm), pH, and TDS (NTU).  

Additionally, the data set featured binary labels denoting the potability of each sam-

ple, with '1' signifying potable water and '0' indicating non-potable water.The data set also 

included binary labels indicating the potability of each sample, with '1' representing po-

table water and '0' representing non-potable water. The potability and non-potabil-

ity standards for drinking water quality in Nigeria can be found in [16]. The class distri-

bution of the groundwater data used for binary classification is shown in Figure 2. 

 

 

Figure 2. Distribution of dataset for binary classification. 

To prepare the data for analysis, the following preprocessing steps were performed: 

i. Data cleaning: any missing or erroneous data points were identified and either cor-

rected or removed from the dataset. 

ii. Feature scaling: continuous variables were scaled to have a mean of 0 and a standard 

deviation of 1 to ensure that all features contributed equally to model training. 

iii. Data split: the data set was divided into training and testing sets using an 80-20 split, 

ensuring that the same split was applied consistently across all models. 

2.3. Model Selection and Training 

For the comparative analysis, four machine learning models and four deep learning 

models were chosen. 
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2.3.1. Machine Learning Models  

1. Logistic Regression  

Logistic regression is one of the most popular Machine Learning algorithms and 

comes under the Supervised Learning technique. It is used for predicting the categorical 

dependent variable using a given set of independent variables. This concept of predictive 

modeling falls under the classification algorithm. It is used in this study to predict a pota-

bility class of groundwater from the set of predators. The logistic curve relates the inde-

pendent variable, X , to the mean of the dependent variable, Y . This relationship can be 

expressed as: 

( )

( ) ( )
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1 exp 1 exp

+
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+ + + − +

a bX
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a bX a bX
 

where P  is the probability of a 1 (the proportion of 1s, the mean of Y ), exp  is 

the base of the natural logarithm, a  and b  are the parameters of the model. 

2. Random Forest Classifier 

Random Forest is a popular ensemble learning technique used for both classification 

and regression tasks. It is an ensemble of decision trees, where each tree independently 

makes predictions, and the final prediction is determined by a majority vote (for classifi-

cation) or averaging (for regression) of the individual tree predictions. The "random" as-

pect in Random Forest refers to two main sources of randomness: 

i. Bootstrap Aggregation (Bagging): Multiple subsets of the training data are created 

through bootstrapping, a resampling technique. Each decision tree in the forest is 

trained on a different subset, introducing diversity among the trees. 

ii. Feature Randomness: Random subsets of features are considered when splitting 

nodes in each tree. This ensures that not all features are used for every split, re-

ducing the risk of overfitting and improving generalization. 

3. K-Nearest Neighbors  

The K-Nearest Neighbor (KNN) algorithm is a popular machine learning technique 

used for classification and regression tasks. It relies on the idea that similar data points 

tend to have similar labels or values. During the training phase, the KNN algorithm stores 

the entire training dataset as a reference. When making predictions, it calculates the dis-

tance between the input data point and all the training examples using a chosen distance 

metric such as Euclidean distance. Next, the algorithm identifies the K nearest neighbors 

to the input data point based on their distances. In the case of classification, the algorithm 

assigns the most common class label among the K neighbors as the predicted label for the 

input data point. For regression, it calculates the average or weighted average of the target 

values of the K neighbors to predict the value for the input data point. With N  sample 

size and 
i

p  probability of every i  sample, the nearest neighbor is expressed as:  

,


= 
i

N

i ij

j K

p p  

where iK  donates the set of points that fall within the same class as sample i , and 

ijp  donates the softmax over Euclidean distances within the embedded space as given 

by: 
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4. Support Vector Classifier 

Support vector classifier (SVC) is one of the most commonly used supervised algo-

rithms that works for both regression and classification tasks, but generally, it works best 

for classification problems. SVC algorithms are used to find a hyperplane that best sepa-

rates the two classes in N-dimensional spaces. A hyperplane is simply a line if there are 

only two input features, and a two-dimensional plane if there are only two input features. 

The maximum distance will exist between hyper-planes and the nearest elements of the 

classes in the best-case scenario when the data are perfectly separable. SVC often aims to 

approximate this scenario as accurately as possible. Although various classes of manifolds 

are used instead of hyperplanes in nonlinear SVC, the basic principle is the same. In non-

linear SVC, hyperplanes are replaced with different classes of manifolds, but the principle 

remains the same.  

2.3.2. Deep Learning Models 

1. Artificial Neural Networks (ANN) 

ANN is a foundational deep learning model that consists of interconnected layers of 

artificial neurons, organized into input, hidden, and output layers. This model is highly 

versatile and excels at capturing complex patterns and relationships in data. 

2. Convolutional Neural Networks (CNN) 

CNN is specifically designed for processing grid-like data, such as images. It com-

prises convolutional layers to automatically detect features and patterns in data. While 

originally developed for image analysis, CNNs can be adapted to various domains. 

3. Feedforward Neural Networks (FNN) 

FNN, like ANN, is a type of feedforward neural network. It's characterized by layers 

of interconnected neurons, each connected to the next layer without feedback loops. FNNs 

are commonly used for regression and classification tasks. 

4. Long Short-Term Memory (LSTM) 

LSTM is designed to handle sequences and time-series data. It excels at capturing 

long-range dependencies in data, making it a suitable choice for sequential data such as 

time-series measurements. 

For each model, the following steps were executed: 

1. Model Training: The model was trained on the training dataset using default hyperpa-

rameters. 

2. Model Evaluation: The model's performance was evaluated on the testing dataset us-

ing accuracy score. 

3. Results and Discussion  

3.1. Descriptive Statistics 

Table 1 provides a statistical overview of the groundwater parameters that were 

measured. Table 1 shows that there are significant variances within these parameters, with 

especially high standard deviations suggesting the greatest variability. Conductivity 

ranges from a low of 209 to a high of 1490, with a mean of 672.73, indicating significant 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 6 of 4 
 

 

diversity in groundwater conductivity. The pH of the water ranges from 5.59 to 7.22, with 

a mean of 6.67, indicating the presence of acidity. Positive skewness implies that the data 

has a right tail, whereas negative skewness indicates that the data has a left tail. Kurtosis 

readings indicate that the groundwater has platykurtic distributions. These investigations 

not only help us understand groundwater composition, but they also have practical con-

sequences for water quality monitoring and environmental management. 

Table 1: Statistical summary of the groundwater parameters. 

Parameters Mean median Min Max Std. deviation Skewness Kurtosis 

EC 672.73 640 209 1490 302.61 0.63 0.32 

pH 6.67 6.73 5.59 7.22 0.41 -0.92 0.55 

TDS 339.2 322.5 104 731 151.26 0.54 0.04 

Calcium 0.59 0.32 0.07 1.75 0.5 1.21 0.14 

Magnesium 0.25 0.15 0.03 0.74 0.21 1.19 0.14 

Chloride 1.26 0.8 0 4.6 1.18 1.25 1.09 

Zinc 0.12 0.11 0.01 0.7 0.13 3.35 14.58 

Manganese 0.09 0.1 0 0.3 0.09 0.77 -0.17 

Copper 0.11 0.1 0.04 0.3 0.06 1.88 3.64 

 

3.2. Correlation Analysis 

Correlation analysis is a useful statistical tool for determining associations between 

various water quality parameters. We can get useful insights into the complex mecha-

nisms that govern groundwater quality by identifying and these relationships [17, 18]. 

The correlation analysis results demonstrate substantial positive and negative relation-

ships among the evaluated groundwater parameters, indicating similar patterns in their 

variations that are statistically significant at the 1% level (Figure 3). Notably, the extraor-

dinarily strong correlation of 0.99 between Calcium and Magnesium implies a nearly lin-

ear relationship, implying that changes in Calcium and/or Magnesium concentration have 

a strong relationship within groundwater samples. Furthermore, conductivity and TDS 

have a strong positive association of 0.99. Hence, the groundwater quality of the study 

area is influenced by the complex interplay of these parameters.                        
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Figure 3. Correlation matrix for the groundwater parameters. 

3.1. Model Performance Evaluation 

The comparative analysis of machine learning and deep learning models for ground-

water potability prediction yielded insightful results. The primary evaluation metrics, in-

cluding accuracy, precision, recall, and F1-Score, were employed to assess the perfor-

mance of each model, providing a comprehensive view of model effectiveness. 

Table 2 shows that four distinct machine learning models were employed to assess 

groundwater potability. Logistic Regression and Random Forest yielded the highest ac-

curacy of 0.833, accompanied by precision scores of 0.900. Logistic Regression maintained 

a recall of 0.750, demonstrating reliable predictive accuracy, while Random Forest 

achieved a recall of 0.750. KNN and SVC delivered moderate accuracy with scores of 

0.667. Among these models, Random Forest and Logistic Regression maintained a bal-

anced F1-Score of 0.778. These findings underscore the potential of machine learning mod-

els for precise groundwater classification, highlighting their relevance in water quality 

assessment. 

Figure 4 displays a graphical representation of the comparative performance metrics 

across various machine learning model algorithms. The visual presentation aids in readily 

identifying the highest accuracy scores achieved by different model algorithms. 

Table 2. Machine learning model performance for groundwater potability classification. 

Machine learning algorithm Accuracy Precision Recall F1-Score 

Logistic Regression  0.833 0.900 0.750 0.778 

KNN 0.667 0.333 0.500 0.400 

SVC 0.667 0.333 0.500 0.400 

Random Forest 0.833 0.900 0.750 0.778 

 

Figure 4. Comparative performance metrics of machine learning algorithms. 
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Table 3 presents the outcomes of the deep learning models applied for groundwater 

potability classification assessment. Among these models, ANN achieved the highest ac-

curacy of 0.833, along with a remarkable precision score of 0.800. ANN exhibited an im-

pressive recall of 0.987, signifying its exceptional ability to correctly identify potable 

groundwater. LSTM also delivered reliable results with an accuracy score of 0.666 and a 

balanced precision of 0.750. Conversely, CNN and FNN displayed lower accuracy scores 

of 0.333 and 0.500, respectively. These results highlight the diverse performance of deep 

learning models and their potential for accurate groundwater classification, especially no-

table in the case of ANN and LSTM, underlining their significance in groundwater quality 

classification assessment. 

Figure 5 provides a graphical illustration of the comparative performance metrics 

across diverse deep learning model algorithms. This visual representation facilitates the 

quick identification of the highest accuracy scores attained by different model algorithms. 

Table 3:  Deep learning model performance for groundwater potability classification. 

Deep learning algorithm Accuracy Precision Recall F1-Score 

ANN 0.833 0.800 0.987 0.888 

CNN 0.333 0.5000 0.500 0.500 

FNN 0.5000 0.666 0.500 0.571 

LSTM 0.666 0.750 0.750 0.750 

 

Figure 5. Comparative performance metrics of deep learning algorithms. 

3.2. Discussion 

The results from our comprehensive evaluation of machine learning and deep learn-

ing models have provided valuable insights into their effectiveness in predicting ground-

water potability. In the realm of machine learning, Logistic Regression and Random For-

est have demonstrated their capability by achieving the highest accuracy scores of 0.833. 

Logistic Regression, in particular, maintained a commendable recall of 0.750, emphasizing 
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its consistent predictive accuracy. Similarly, Random Forest showcased its potential with 

a recall of 0.750. KNN and SVC exhibited moderate accuracy levels, both scoring 0.667. 

Notably, Random Forest and Logistic Regression achieved balanced F1-Scores of 0.778, 

highlighting their reliability. 

These findings underscore the potential of machine learning models in precisely clas-

sifying groundwater, emphasizing their significance in water quality assessment. Ma-

chine learning models are well-poised for applications in real-world scenarios where ac-

curate predictions are crucial. The strength of machine learning models lies in their ability 

to handle data with low correlations among parameters. 

On the other hand, deep learning models have also made significant contributions to 

the groundwater potability prediction task. ANN delivered an accuracy score of 0.833, 

rivaling the performance of Logistic Regression and Random Forest. LSTM demonstrated 

its potential with an accuracy score of 0.666. Although CNN and FNN achieved lower 

accuracy scores of 0.333 and 0.5, respectively, they remain promising in specific applica-

tions. 

However, it is important to note that while accuracy is a valuable metric, it may not 

be the sole determinant of model suitability. Factors such as computational efficiency, in-

terpretability, and the specific needs of the application must be considered when selecting 

a model for real-world deployment. Moreover, the potential for further model refinement 

through hyperparameter tuning and the exploration of ensemble techniques should not 

be overlooked. These avenues may enhance the predictive capabilities of the models and 

offer improved potability classifications for groundwater resources in the study area. 

 

3. Concluding Remarks 

This study has provided an extensive comparative assessment of machine learning 

and deep learning models for predicting groundwater potability in the Jaen district of 

Kano State, Nigeria. Our findings offer valuable insights into the selection and perfor-

mance of these models, particularly in situations characterized by low correlations among 

groundwater parameters. Logistic Regression and the Decision Tree classifier have 

emerged as standout performers, each achieving an impressive accuracy score of 0.833. 

These models not only exhibit robust predictive capabilities but also offer interpretability, 

positioning them as promising candidates for practical applications in water resource 

management and public health initiatives. On the other hand, our exploration of deep 

learning models yielded a range of outcomes. ANN exhibited a remarkable accuracy score 

of 0.833, underlining its potential for accurate predictions. LSTM followed closely with a 

score of 0.666, demonstrating strong predictive abilities. CNN and FNN delivered slightly 

lower scores, emphasizing the need for further investigation and refinement. However, 

we emphasize that the selection of a suitable model should consider various factors, such 

as computational efficiency and the specific requirements of the application. Future re-

search directions include the fine-tuning of models and the exploration of ensemble tech-

niques to enhance predictive accuracy. These ongoing efforts hold the promise of advanc-

ing the precision of groundwater potability predictions, contributing to the overarching 

goal of ensuring clean and safe drinking water for communities and the sustainable man-

agement of vital natural resources. 
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