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Abstract: Leveraging advancements in metabolomics, and other cutting-edge technologies, preci-

sion neuronutrition aims to identify personalized nutrient requirements to optimize brain health 

outcomes and prevent neurological disorders. The main pathological mechanisms of brain health 

disruption include neuroinflammation, oxidative stress, gut-brain disturbances and nutrient defi-

ciencies. Recent studies have identified biological markers for all those mechanisms. Precision in-

terventions for maintaining brain health and optimizing outcomes include omega-3 fatty acids, vit-

amin B12, vitamin D, magnesium, coenzyme q10, polyphenols, l-carnitine, prebiotics and probiotics 

Precision neuronutrition offers a promising approach to optimize brain health through personalized 

nutrient interventions. Continued research in this field holds great potential for improving brain 

health outcomes. 
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1. Introduction 

According WHO experts brain health is the state of proper cognitive, sensory, socio-

emotional, behavioral and motor functioning, allowing a person to reach his full potential 

throughout time, regardless of presence or absence of disorders [1]. In the context of brain 

health optimizing a number of researchers [2,3] call for attention to the developing field 

of neuroscience-nutritional cognitive neuroscience. This scientific branch aims to investi-

gate how nutrition impacts the brain’s development, overall well-being, and the aging 

process [4,5]. Recently, the term neuronutrition is being used actively [6,7]. Neuronutri-

tion is an interdisciplinary field studying the influence of various aspects of nutrition on 

brain health, neurological diseases prevention and treatment throughout life. Brain re-

quires specific nutrients to maintain its structural integrity, support cognitive processes, 

and protect against neurodegenerative diseases [8]. Assessing brain health objectively is 

a crucial challenge in neuroscience, particularly in detecting and diagnosing early neu-

rocognitive changes, including those caused by nutritional deficiencies [9]. Precision neu-

ronutrition aims to identify personalized nutrient requirements to optimize brain health 

outcomes and prevent neurological disorders [10,11]. 

2. Brain Health Status 

Biomarkers indicative of brain health status reflect neuroinflammation, oxidative 

stress, gut-brain disturbances, and nutrient deficiencies. 
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2.1. Neuroinflammation 

The main biomarkers of neuroinflammation are C-reactive protein, interleukin-6, and 

tumor necrosis factor-alpha. Levels of these biomarkers are altered in a number of neuro-

logical diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy 

and others [14–16]. However, for a more accurate assessment of neuroinflammation, tak-

ing into account other molecular markers, such as chemokines, microglial cytokines 

[17,18], angiogenesis factors [19] is necessary. However, assessing the degree of neuroin-

flammation poses a number of difficulties, due to complex biology of the process, and the 

need for new strategies to collect and analyze relevant data [20,21]. 

2.2. Oxidative Stress 

Oxidative stress has been proven to play a crucial part in pathogenesis of many neu-

rodegenerative diseases, including AD, PD, amyotrophic lateral sclerosis and Hunting-

ton’s disease [22–24]. Brain is particularly vulnerable to oxidative damage, and excessive 

formation of reactive oxygen species (ROS) can lead to neuronal cell death [25]. Antioxi-

dant enzymes: catalase, glutathione peroxidase-1 have been quantified in plasma as indi-

cators of oxidative stress [26]. F2-isoprostanes are stereoisomers of prostaglandin F2 and 

are considered the most reliable markers for monitoring oxidative stress [27,28]. 8-isopros-

tane is considered a marker of oxidative stress. It can be measured in various biological 

fluids, including urine, plasma [29], saliva [30] and exhaled air condensate [31]. Advanced 

oxidation protein products are the end products of reaction between plasma albumin and 

chlorinated oxidants [32], and can be measured in blood plasma [26]. Protein carbonyla-

tion is an oxidative transformation induced by ROS, reactive nitrogen species reactive hal-

ogen species and reactive aldehydes [33]. They are considered as markers of oxidative 

stress [27], that can be measured in blood plasma. 8-hydroxy-2′-deoxyguanosine, 8-oxo-

7,8-dihydroguanosine and malondialdehyde are also indicative of oxidative stress [34–

36]. Many biomarkers associated with oxidative stress can be measured in biological sam-

ples using standard assays [37,38]. The ability to accurately detect free radical formation 

in cells and tissues is critical for the development of appropriate therapeutic antioxidant 

approaches to brain health [39]. 

2.3. Gut-Bran Disturbances 

Gut microbiota and its metabolites have been shown to play a role in pathogenesis 

and progression of a number of neurological diseases through gut-brain axis regulation 

[40]. Short-chain fatty acids are metabolites that may affect brain function and are associ-

ated with some neurological disorders [40]. Indoles are involved in various neurological 

functions and are associated with several neurological disorders [41]. Secondary bile acids 

can serve as activators of bile acid receptors in the brain, and their affinity for individual 

receptors varies [42]. The gut-brain axis is a potential target for the development of new 

treatments for neurological disorders, and the role of secondary bile acids in this axis is 

an area of active research [43]. Serotonin, dopamine, 5-aminovaleric acid and taurine are 

neurotransmitters produced by intestinal bacteria that regulate neurotransmission in the 

brain as well as gut itself [44]. Liposaccharide binding protein, zonulin and claudin-3 are 

biomarkers reflecting damage to the epithelial blood-gut barrier [45–47]. 

2.4. Nutrient Deficiencies 

Nutrient deficiencies can lead to the manifestation of neuroinflammation, oxidative 

stress and a wide range of neurological problems, including encephalopathy, cognitive 

impairment, and psychiatric disorders [48–50]. Deficiency is most often caused by poor 

nutrition, including not eating enough calories, lack of certain foods in diet such as fruits 

and vegetables, eating disorders, and alter vitamins and minerals absorption [51,52]. Vit-

amin B12 deficiency is associated with cognitive impairment, polyneuropathy and psy-

chiatric manifestations [48]. Thiamine deficiency can cause Wernicke-Korsakoff syndrome 
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[53]. Vitamin D deficiency can lead to neurological manifestations such as depression, 

cognitive impairment and multiple sclerosis [56]. Magnesium deficiency has been associ-

ated with many neurological disorders such as AD, stroke, migraine, depression and cer-

ebellar syndrome [57–59]. Coenzyme Q10 may have neuroprotective effects in neurologi-

cal diseases, including AD, PD, Huntington’s disease, amyotrophic lateral sclerosis and 

stroke [60,61]. Neurological manifestations of carnitine deficiency include hypotension, 

burning pain, decreased endurance, sensory impairment, developmental delay, rigidity 

and myopathy [62,63]. These biomarkers could provide real-time feedback on the effec-

tiveness of nutrient interventions. 

3. Precision Nutrient Interventions 

There are other crucial substances that play a significant role in brain health [64]. 

These substances can specifically target neuroinflammation, oxidative stress, and gut-

brain disturbances. Recent research has shown that dietary polyphenols may have bene-

ficial effects on neurological diseases by attenuating oxidative stress and reducing the risk 

of developing neurodegenerative diseases such as AD, stroke, multiple sclerosis, PD and 

Huntington’s disease [65]. Polyphenols have great potential to address brain ageing by 

simultaneously modulating gut-brain axis [65]. Probiotics can have beneficial effects on 

patients with neurological diseases by reducing oxidative stress and reducing the risk of 

developing neurodegenerative diseases such as AD, stroke, multiple sclerosis, PD, etc. 

[67]. Non-digestible oligosaccharides have neuroprotection effects by modulating gut-

brain axis [68]. Consuming omega-3 fatty acids has been shown to improve learning, 

memory, cognitive well-being, and blood flow in the brain [69]. Omega-3 supplementa-

tion may also target neuroinflammation [70], oxidative stress [71] and gut-brain disturb-

ances [72]. Deficiency in omega-3 fatty acids increases the risk of neurodegenerative dis-

orders [73] and accelerates brain aging [74]. Overall, omega-3 fatty acids are essential for 

maintaining optimal brain health (Figure 1). 

 

Figure 1. Overview of precision nutritional interventions for brain health. 

4. Conclusions 

The field of precision neuronutrition holds great promise in optimizing brain health 

through targeted nutrient interventions based on an individual’s brain health status. In 

order to accurately assess brain health, a personalized approach is necessary, taking into 

account an individual’s nutrient, biochemical, and metabolic characteristics. By adapting 
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scientific findings to each person’s unique profile, brain health outcomes could effectively 

be optimized. Continued research in this area has the potential to revolutionize approach 

to nutrition for the brain and improve overall brain health. 
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