

01-30 November 2023 | Online

Investigation of chemical compounds of *Astragalus galactites* (Pall.) using GC-QTOF-MS and UPC2-QTOF-MS

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

Sugarjav E^{1,3}*, Gunbilig D², Irekhbayar J³, Chimedragchaa Ch¹

¹ Institute of Traditional Medicine and Technology, Ulaanbaatar, Mongolia

² Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria

³ School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia

* Corresponding author: <u>sugarjave@gmail.com</u>

01-30 November 2023 | Online

Investigation of chemical compounds of *Astragalus galactites* (Pall.) using GC-QTOF-MS and UPC2-QTOF-MS

Graphical Abstract

Scheme of UPC² -QTOF-MS system analysis

01–30 November 2023 | Online

Abstract:

Objective: This study aimed to shotgun analyze biological active substances in A.galactites, a plant used in Mongolian traditional medicine.

Material and Methods: The plant sample was collected in the Tahiltayn Mountain area (47° 91' 44" N, 106° 70' 63" E), Songino Khairhan district, Mongolia, (May 2021). Untargeted metabolite profiling analyses were performed in various plant organs (aerial parts, leaves, roots, and flowers) and previously isolated fractions (XYZ) of chloroform extract using GC-QTOF-MS and UPC2-QTOF-MS instruments.

Results: Twenty-three compounds, eight phenolic acid derivatives, seven flavonoids, two diterpenoids derivatives, two monoterpenoids, one sesquiterpenoid, two fatty acids, and one lignan were identified by UPC2-QTOF-MS analysis in the chloroform fraction of A.galactites. Further 16 compounds, of which 14 are polysaccharide derivatives and two alkaloids were also identified putatively by GC-MS analysis in the extract of leaves, flowers, roots, and aerial parts of A.galactites.

Conclusion: A shotgun metabolite profiling showed the presence of numerous polyphenolic compounds, polysaccharides, and saponins to be containing in A.galactites samples, a medicinal plant for its anti-inflammatory properties. The presence of the above-mentioned compounds supports the pharmacological effects and radical scavenging activities we reported (XYZ) previously.

Keywords: Astragalus galactites Pall., GC-MS, UPC2-QTOF-MS

Introduction

The flowers are milky white, irregular, covered with hairs, and have small green leaves. It has no peculiar smell or bitter taste. The aerial parts of *Astragalus galactites* (Pall.) are considered to be a rich source of a large amount of bioactive substances like flavonoids, alkaloids, polysaccharides and saponin

主编,贾敏如,张艺,中国民族药词典, 中国医药科技出版社,2015:98 中国科学院西北高原生物研究所.藏药志[M]. 西宁: 青海人民出版社,1991:444-445. А.Авирмаа, М.Амбага, Г.Пүрэвсүрэн, 1991 Лигаа У. Монгол орны эмийн ургамлыг өрнө дорнын анагаах ухаанд хэрэглэхүй. 2005 он. х. 30, 453-454.

The 9th International Electronic Conference on Medicinal Chemistry 01-30 November 2023 | Online

Research purpose

> This study aimed to shotgun analyze biological active substances in A.galactites, a

plant used in Mongolian traditional medicine.

Research material

- The plant sample was collected in the Tahiltayn Mountain area (47° 91' 44" N, 106° 70' 63" E), Songinokhairhan district, Mongolia, (May 2021).
- Astragalus galactites (Pall.) is a native species to the northern part of China, Mongolia, and Siberia.

01-30 November 2023 | Online

Results and discussion

01-30 November 2023 | Online

UPC²-Q-TOF-MS/MS spectrum of Fraction-1

N⁰	m/z	RT /min/	Compounds name	Chemical formula	Class of compound
1	225	4.36	Dihydrosinapic acid	C11H14O5	Phenolic acids
2	223	4.47	Sinapic acid	C11H12O5	Phenolic acids
3	291	6.04	Methyl pinolenate	C19H32O2	Fatty acid
4	305	6.43	(+)-Gallocatechin	C15H14O7	Flavonoids
5	178	9.89	Hippuric acid	C9H9NO3	Phenolic acids
6	289	10.95	Catechin	C15H14O6	Polyphenol
7	303	12.02	3'-O-Methylcatechin	C16H16O6	Flavonoids

01-30 November 2023 | Online

UPC²-Q-TOF-MS/MS spectrum of Fraction-2

N⁰	m/z	RT	Compounds name	Chemical formula	Class of compound
		/min/	Compounds name		
1	221	3.33	Alpha-bisabolol	C15H26O	Sesquiterpenoids
2	195	3.95	Hydroxycaffeic acid	C9H8O5	Phenolic acids
3	178	5.03	Hippuric acid	C9H9NO3	Phenolic acids
4	419	5.68	Apigenin 7-O-glucoside	C21H24O9	Flavonoids
5	579	9.59	Naringin	C27H32O14	Flavonoids
6	289	10.96	Manool	C20H34O	Diterpenes

UPC²-Q-TOF-MS/MS spectrum of Fraction-3

N⁰	m/z	RT /min/	Compounds name	Chemical formula	Class of compound
1	151	4.29	cis-verbenol	C10H16O	Monoterpenoids
2	135	4.57	gamma-terpinene	C10H16	Monoterpene
3	195	6.40	Dihydroferulic acid	C10H12O4	Phenolic acids
4	313	6.96	Irisolidone	C17H14O6	Flavonoids
5	433	8.68	Quercetin 3-O-arabinoside	C20H18O11	Flavonoids
6	359	9.26	(+)-lariciresinol	C20H24O6	Lignans
7	178	9.89	Hippuric acid	C9H9NO3	Phenolic acids
8	519	10.30	5,3',4'-Trihydroxy-3-methoxy-6:7-methylenedioxy flavone 4'-O-glucuronide	C23H20O14	Flavonoids
9	289	11.12	13-epi-manoyl oxide	C20H34O	Diterpenes
10	305	11.62	7,11,14-Eicosatrienoic acid (Et) C20:3	C20H34O2	Fatty acid

01-30 November 2023 | Online

01-30 November 2023 | Online

Figure 1. GC-MS total ion chromatogram of Astragalus galactites (5 groups)

A-GC-MS total ion chromatogram of aerial (black), flower (pink), root (yellow), leaves (leaves), flower (extracted with chloroform) (blue), B- root (yellow06), C- aerial (black07), D-leaves (green08), E-flower (pink09), J-flower (extracted with chloroform solvent-blue10)

01-30 November 2023 | Online

GC-MS analysis of A. Galactites

№	Peak RT ^a (min)	Compound detected*	Molecular Formula	Part of the plant
1	8.319517	N-Benzyl-1H-benzimidazole	C14H12N2	Aerial, Leaves, Flower, Flower ^b
2	9.4346177	Silanol, trimethyl-, phosphate	C9H27O4PSi3	Root, Flower ^b , Leaves, Aerial, Flower
3	12.5485025	Malic acid, 3TMS derivative	C13H30O5Si3	Root, Flower ^b , Aerial, Flower
4	13.482329	2,3,4-Trihydroxybutyric acid tetrakis (trimethylsilyl), Threonic acid	C16H40O5Si4	Leaves, Flower ^b
5	16.112684	D-(-)-Fructofuranose, pentakis(trimethylsilyl) ether (isomer 2)	C21H52O6Si5	Root, Flower ^b , Aerial, Flower
6	16.328128	D-Pinitol, pentakis(trimethylsilyl) ether	C22H54O6Si5	Root, Aerial, Leaves, Flower, Flower ^b
7	16.555017	βD-Galactofuranose	C21H52O6Si5	Root, Aerial, Flower, Flower ^b
8	16.953380	D-(+)-Galactopyranose, 5TMS derivative	C21H52O6Si5	Root, Aerial, Leaves, Flower, Flower ^b
9	17.403437	D-Sorbitol, 6TMS derivative	C24H62O6Si6	Root, Aerial, Leaves, Flower
10	17.878917	β-D-Glucopyranose, 5TMS derivative	C21H52O6Si5	Root, Aerial, Leaves, Flower, Flower ^b
11	18.760181	Myo-Inositol, 6TMS derivative	C24H60O6Si6	Root, Aerial Leaves, Flower, Flower ^b
12	22.504929	Docosanol, TMS derivative	C25H54OSi	Aerial, Flower, Flower ^b
13	23.247551	Sucrose, 8TMS derivative	C36H86O11Si8	Root, Aerial, Flower, Flower ^b
14	25.460362	Silane,dimethyl(4-(2-phenylprop-2-yl)phenoxy) decyloxy-	C27H42O2Si	Leaves, Flower ^b
15	26.442339	1-[(4-Methylbenzene) sulfonyl]pyrrole	C11H11NO2S	Leaves
16	36.521192	D- (+)-Cellobiose, octakis(trimethylsilyl) ether, methyloxime	C37H89NO11Si8	Leaves, Flower ^b

*The compounds that were identified and compared with a similar mass fragmentation in the NIST database library. a R.T: Retention time; b Flower: Sample of flower extracted with chloroform solvent

The 9th International Electronic Conference on Medicinal Chemistry 01-30 November 2023 | Online

Conclusions

In summary, polyphenolic compounds, polysaccharides, and saponins are the main compounds of *A.Galactites* medicinal plants with anti-inflammatory properties, and these biologically active compounds are explained by the pharmacological effects and radical scavenging activities that we have previously investigated. In the future, we are focused on researching and developing of new herbal medicines for anti-immune and gouty arthritis.

Acknowledgments

The authors would like to thank the team of the Researcher Center of the Institute of Traditional Medicine and Technology, Mongolia for their help during this study. GD thanks the Austrian Agency for Education and Internationalization, Federal Ministry of Education, Science and Research of Austria (Project KoEF 10/2020).

