Drugs' skin permeability studies using HPLC chromatographic data obtained on different C18 stationary phases and calculated descriptors

Elżbieta Brzezińska¹, Anna W. Sobańska¹, Azza Krichene², Emna Debbech², Adam Hekner¹, Karolina Wanat¹, Arleta Borowiak¹

¹ Medical University of Lodz, Poland; ² University of Monastyr, Tunisia

Introduction

Transepidermal absorption is an important route of chemicals' entry into a human body. The skin permeability coefficient K_{n} is defined according to equation (1):

 $K_{\rm p} = K_{\rm m} D/h \qquad (1)$

where K_m – the partition coefficient between the stratum corneum and the vehicle; D – the effective compound's diffusion coefficient through the *stratum corneum*; h – the diffusional path length.

The experimental values of skin permeability coefficients obtained in vivo (on human volunteers), ex vivo (on excised human skin) or even on animal models [1] are scarce and often inconsistent due to variations in properties of different skin specimen; there are also some ethical considerations related to such models. For these reasons several in vitro or in silico skin permeation models have been developed [2]. One of the most frequently cited in silico skin permeability models, based on just two descriptors known to have a very strong influence on compounds' ability to cross biological barriers: lipophilicity (expressed as octanol-water partition coefficient log P) and molecular weight (M_w), was proposed by Potts (equation (2)) [3]: $\log K_{p} = -2.80 + 0.66 \log P - 0.0056 M_{w}$ (2)

Material and method

21 randomly selected drugs and excipients of different molecular structures (nipagin M, nipagin P, theophyline, caffeine, triclosan, phenylbutazone, vitamin k3, indomethacin, benzophenone-4, lormetazepam, elenium, naproxen, ibuprofen, bromazepam, aspirin, medazepam, spironolactone, cortisone acetate, olanzapine, chloramfenicol, sumatriptan) were subjected to HPLC chromatography on two different stationary phases: RP-18 and RP-18Ar using the 50:50 (v/v) binary mixture of pH 7.4 phosphate-buffered saline - acetonitrile as a mobile phase.

Results and Discussion

The skin permeability coefficient ($\textbf{\textit{K}}_{p}$) is an important parameter that helps in the assessment of a compound's epidermal permeability; however, the experimentally determined values of K_p are available for only some drugs. For this reason, it was decided that models of skin permeability based on chromatographic and calculated descriptors should be generated using reference \mathbf{K}_{p} values obtained in silico using SwissADME software [4]. Molecular weight (Mw), heavy atom count (#HvAt), aromatic heavy atom count (#ArHvAt), fraction of sp³ carbons ($F_{C_{Sp3}}$), freely rotatable bond count (**#FRB**), hydrogen bond donor count (**#HD**), hydrogen bond acceptor count (**#HA**), octanol–water partition coefficient (log **P**), molar refractivity (**MR**) and topological polar surface area (TPSA) were calculated also using SwissADME software. The relationships between the chromatographic retention factors log k of compounds listed above obtained on both stationary phases and their predicted skin permeability were investigated. A multivariate linear relationship (equation (3)) was obtained using stepwise regression (forward mode) based on four out of 12 dependent variables listed in Table 1.

 $\log \text{Kp} = -4.78 \ (\pm 0.30) - 0.028 \ (\pm 0.006) \ \textbf{\textit{TPSA}} + 0.18 \ (\pm 0.06) \ \textbf{\textit{\#FRB}} + 0.40 \ (\pm 0.20) \ \log \ \textbf{\textit{k}}_{\text{RP18Ar}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} + 0.18 \ (\pm 0.20) \ \log \ \textbf{\textit{k}}_{\text{RP18Ar}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{F}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{F}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{\textit{F}}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{F}_{\text{Csp3}} - 0.74 \ (\pm 0.63) \ \textbf{F}_{\text{Csp3}$ (3)

(R² = 0.73, R²_{adj.} = 0.66, p < 0.01, s_e = 0.52)

Table 1												
	M _w	#HeavyAt	#ArHeavyAt	F _{Csp3}	#FRB	#HA	#HD	MR	TPSA	$\log k_{\text{RP18}}$	log k _{RP18Ar}	log K p
nipagin M	152.2	11	6	0.12	2	3	1	39.7	46.5	0.15	-0.11	-5.84
nipagin P	180.2	13	6	0.3	4	3	1	49.4	46.5	0.49	0.24	-5.24
theophyline	180.2	13	9	0.29	0	3	1	47.1	72.7	-0.59	-0.77	-7.41
kofeina	194.2	14	9	0.38	0	3	0	52.0	61.8	-0.37	-0.73	-7.53
triclosan	289.5	17	12	0	2	2	1	70.0	29.5	1.31	-0.22	-4.69
phenylbutasone	308.4	23	12	0.26	5	2	0	97.8	40.6	-0.54	-0.62	-5.94
vitamin k3	172.2	13	6	0.09	0	2	0	49.1	34.1	0.58	0.46	-5.79
indomethacin	357.8	25	15	0.16	5	4	1	96.1	68.5	-0.36	1.16	-5.45
BZ-4	308.3	21	12	0.07	4	6	2	74.7	109.3	-0.84	-0.72	-6.63
lormetazepam	335.2	22	12	0.12	1	3	1	94.1	52.9	0.57	0.35	-6.61
elenium	299.8	21	12	0.12	1	3	1	90.2	48.2	0.53	0.18	-6.16
naproxen	230.3	17	10	0.21	3	3	1	66.8	46.5	-0.77	-0.83	-5.33
ibuprofen	206.3	15	6	0.46	4	2	1	62.2	37.3	-0.33	-0.40	-5.07
bromazepam	316.2	19	12	0.07	1	3	1	83.5	54.4	0.19	-0.07	-6.77
aspirin	180.2	13	6	0.11	3	4	1	44.9	63.6	-1.11	-0.66	-6.55
medazepam	270.8	19	12	0.19	1	1	0	87.8	15.6	1.42	0.96	-4.82
spironolactone	416.6	29	0	0.79	2	4	0	115.2	85.7	0.52	0.64	-6.76
cortisone acet.	402.5	29	0	0.74	4	6	1	106.3	97.7	0.35	0.29	-7.26
olanzapine	312.4	22	11	0.35	1	2	1	107.9	59.1	1.27	0.49	-6.18
chloramphenicol	323.1	20	6	0.36	7	5	3	74.4	115.4	-0.08	-0.24	-7.46
sumatriptan	295.4	20	9	0.43	6	4	2	82.1	73.6	0.16	-0.62	-7.31

Conclusions

· C-18 HPLC retention parameters are not suitable as sole predictors of skin permeability

 Multivariate linear regression (MLR) models of log K_p obtained for the studied group of compounds account for up to 73% of total variability

· Calculated and chromatographic descriptors in MLR models were selected in the following or (topological polar surface area); #FRB (total count of freely rotatable bonds); log k_{RP-18Ar} (chrom retention factor); F_{Csp3} (fraction of sp³ carbon atoms)

log k_{RP1BA} encodes mainly compounds' lipophilicity (log P) and MR, but these correlations are strong (Table 2)

•Chromatographic retention factors on the RP-18Ar stationary phase are promising and more use permeability predictions than those obtained on RP-18, but further studies on larger groups of co are required

References 1. Todo, H. Pharmaceutics 2017, 9, 33 Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Pharmaceutics 2020, 12, 152 2. Potts, R.O.; Guy, R.H. Pharmaceutical Research 1992, 9, 663-669 3.

Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7, 42717 4.

This research was supported by an internal grant of the Medical University of Lodz no. 503/3-016-03/503-31-001

The 9th International Electronic Conference on **Medicinal Chemistry** 01-30 November 2023 | Online

Table 2											
	M _w	log P	#HeavyAt	#ArHeavyAt	F _{C sp3}	#FRB	#HA	#HD	MR	TPSA	log k rpisar
M _w	1.00	0.49	0.97	0.00	0.40	0.30	0.41	0.14	0.93	0.45	0.42
log P	0.49	1.00	0.50	0.17	0.00	0.04	-0.32	-0.34	0.60	-0.42	0.57
#HeavyAt	0.97	0.50	1.00	-0.06	0.50	0.30	0.41	0.02	0.95	0.43	0.43
#ArHeavyAt	0.00	0.17	-0.06	1.00	-0.72	-0.11	-0.35	0.05	0.08	-0.34	0.00
F _{Csp3}	0.40	0.00	0.50	-0.72	1.00	0.25	0.32	-0.07	0.41	0.43	0.10
#FRB	0.30	0.04	0.30	-0.11	0.25	1.00	0.50	0.61	0.17	0.46	-0.15
#HA	0.41	-0.32	0.41	-0.35	0.32	0.50	1.00	0.58	0.15	0.91	-0.17
#HD	0.14	-0.34	0.02	0.05	-0.07	0.61	0.58	1.00	-0.06	0.62	-0.29
MR	0.93	0.60	0.95	0.08	0.41	0.17	0.15	-0.06	1.00	0.22	0.50
TPSA	0.45	-0.42	0.43	-0.34	0.43	0.46	0.91	0.62	0.22	1.00	-0.18
log k rpisar	0.42	0.57	0.43	0.00	0.10	-0.15	-0.17	-0.29	0.50	-0.18	1.00
	M _w log P #HeavyAt #ArHeavyAt F _{Csp3} #FRB #HA HHD MR TPSA	Μw Mw 1.00 log P 0.49 #HeavyAt 0.97 #ArHeavyAt 0.00 F _{Csp3} 0.40 #FRB 0.30 #HA 0.14 MR 0.93 TPSA 0.45	M _w log P M _w 1.00 0.49 log P 0.49 1.00 #HeavyAt 0.97 0.50 #ArHeavyAt 0.00 0.17 F _{Cap3} 0.40 0.00 #FRB 0.30 0.04 #HA 0.41 -0.32 #HD 0.14 -0.34 MR 0.93 0.60 TPSA 0.45 -0.42	M _w log P #HeavyAt M _w 1.00 0.49 0.97 log P 0.49 1.00 0.50 #HeavyAt 0.97 0.50 1.00 #ArheavyAt 0.00 0.17 -0.06 F _{Cap3} 0.40 0.00 0.50 #FRB 0.30 0.04 0.30 #HA 0.41 -0.32 0.41 #HD 0.14 -0.34 0.02 MR 0.93 0.60 0.95 TPSA 0.45 -0.42 0.43	M _w log P #HeavyAt #ArHeavyAt M _w 1.00 0.49 0.97 0.00 log P 0.49 1.00 0.50 0.17 #HeavyAt 0.97 0.50 1.00 -0.06 #ArHeavyAt 0.00 0.17 -0.06 1.00 #Fcaps 0.40 0.00 0.50 -0.72 #FRB 0.30 0.04 0.30 -0.11 #HA 0.41 -0.32 0.41 -0.35 #HD 0.14 -0.34 0.02 0.05 MR 0.93 0.60 0.95 0.08 TPSA 0.45 -0.42 0.43 -0.34			M _w log P #HeavyAt #ArHeavyAt Fc μ2 #FRB #HA M _w 1.00 0.49 0.97 0.00 0.40 0.30 0.41 log P 0.49 1.00 0.50 0.17 0.00 0.04 -0.32 #HeavyAt 0.97 0.50 0.17 0.00 0.04 -0.32 #HeavyAt 0.97 0.50 1.00 -0.06 1.00 -0.72 0.11 -0.35 #ArHeavyAt 0.00 0.17 -0.06 1.00 -0.72 1.01 -0.55 #FCB 0.40 0.00 0.50 -0.72 1.00 0.55 0.32 #FRB 0.40 0.04 0.30 -0.11 0.25 0.32 0.50 1.00 #HA 0.41 -0.32 0.41 -0.32 0.50 1.00 1.00 #HA 0.41 -0.32 0.41 0.53 0.47 0.51 1.00 #HD 0.14			

MDPI,