

1 Abstract

² Sex hormone-binding globulin (SHBG) enhances mitochon-

³ drial dynamics and biogenesis while attenuating inflammation

- ⁴ in adipose-derived mesenchymal stem cells (ASCs) derived
- ⁵ from equine metabolic syndrome (EMS)-affected horses +

6 Nabila Bourebaba¹ and Krzysztof Marycz¹

7	¹ Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of
8	Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; nabila.bourebaba@upwr.edu.pl.
9	krzysztof.marycz@upwr.edu.pl.
10	
11	* Correspondence: <u>nabila.bourebaba@upwr.edu.pl</u> ; Tel.: +48 71 320 5248.
12	+ Presented at The 9th International Electronic Conference on Medicinal Chemistry, On-line, 1-30 November
13	2023.
14	Abstract: Equine metabolic syndrome (EMS), in related to the onset of chronic low-grade inflammation, as we
15	as dysregulations in the mitochondrial dynamics and metabolism, and predisposition to laminitis. In fact
16	EMS is a critical endocrine disorder among the most prevalent conditions affecting horses from differer
17	breeds. According to the most recent research, low human sex hormone-binding globulin (SHBG) serum lev
18	els correlate with an increased risk of obesity, insulin resistance and diabetes, and may contribute to overa
19	metabolic dysregulations. This study aimed to test whether exogenous SHBG could protect EMS affected
20	adipose-derived stromal stem cells (EqASCEMS) from the mitochondria dysfunction and inflammatior
21	EqASCEMS wells were treated with 50 nM of exogenous SHBG, whose biocompatibility was tested after 2
22	of incubation. Several parameters including cell viability, mitochondria dynamics, metabolism and biogenesi
23	were assayed; as well as inflammatory and anti-inflammatory markers expression were analyzed. Obtaine
24	data demonstrated that exogenous SHBG treatment significantly enhanced the mitochondrial biogenesis b
	25 improving the expression of MFN, PARKIN, PINK and Cytochrome C at both genes and proteins levels

furthermore, the SHBG exogenous treatment displayed same effect regarding the expression of the genes related to mitoribosomes and the mitochondrial oxidative phosphorylation (OXPHOS) system (NDUFA9, COX4L1, COX4L2, MTERF4 and OX1AL). Furthermore, SHBG alleviated the inflammation caused by EMS; thus, via the reduction of the gene expression of cytokines such as IL-1 β , IL-6 and TNF- α and by enhancing the gene expression of anti-inflammatory markers (IL-4, IL-10 and IL-13). Our study suggests that the SHBG

is endowed with crucial beneficial effects on ASC metabolic activities and could serve as a valuable therapeu-

	25
Citation: Lastname, F.; Lastname, I	F 2 6
Lastname, F. Title. Med. Sci. Forum	27
2023 , 2, x.	28
https://doi.org/10.3390/xxxxx	29
	30
Academic Editor: Firstname Last-	31
name	32
	22
Published: date	33

 Publisher's Note: MDPI stays neu44

 tral with regard to jurisdictionad5

 claims in published maps and insti

 tutional affiliations.

 37

Copyright: © 2023 by the author\$9 Submitted for possible open access publication under the terms and conditions of the Creative Common\$1 Attribution (CC BY) licens\$2 (https://creativecommons.org/licens es/by/4.0/). Keywords: EMS; SHBG; mitochondria; OXPHOS; Inflammation

tic target for the development of efficient EMS treatment protocols.

38

1	Supplementary Materials:
2	Author Contributions: Con-ceptualization, N.B. and K.M.; methodology, N.B; validation, K.M.;
3	formal analysis, N.B.; investigation, N.B.; resources, N.B.; data curation, N.B.; writing-original
4	draft preparation, N.B. and K.M.; writing-review and editing, N.B. and K.M.; supervision, N.B.
5	and K.M.; project administration, K.M.; funding acquisition, K.M. All authors have read and agreed
6	to the published version of the manuscript."
7	Funding: The work was supported by two grants financed by the National Science Centre in Poland
8	over the course of the realization of the project: "Exploring the role and therapeutic potential of sex
9	hormone binding globulin (SHBG) in the course of insulin resistance, inflammation, lipotoxicity in
10	adipose stem progenitor cells and adipocytes in equine metabolic syndrome (EMS) mares" (No
11	2019/35/B/NZ7/03651).
12	Institutional Review Board Statement: "Not applicable"
13	Informed Consent Statement: "Not applicable"
14	Data Availability Statement: The data that support the findings of this study are available from the
15	corresponding author, upon reasonable request.
16	Acknowledgments: "Not applicable"
17	
18	Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
19	design of the study; in the collection, analyses, or interpretation of data; in the writing of the
20	manuscript, or in the decision to publish the results.
21	