Nanoparticles Derived from *Rhazya Stricta*: Promising Advances for Anti-Cancer/Anti-Bacterial Treatment - In *Vitro* Studies

Haifa Alhaidal¹, Afrah Mohammed^{2,} Arwa Alsubait³, Fai Alenazi¹, Layan Al Tuhayni¹, Lamis Alsaqer¹, Sahar Alghamdi^{1,3} *

College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia;
 Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia;
 Medical Research Core Facility and Platforms Department, King Abdullah International Medical Research Center
 Riyadh, Saudi Arabia

Introduction:

- Cancer remains a significant global health concern, necessitating the exploration of novel anti-cancer treatments.
- Extensive research supports the potential of using plant extracts and silver nanoparticles (AgNPs) as a safer and more effective alternative treatment for cancer patients.
- Our study specifically investigates the antibacterial and anticancer properties of silver nanoparticles and bio-components from Rhazya Stricta (R.S.) extract, synthesized using silver nitrate (AgNO₃).

2- Characterization:

A) FTIR:

Figure 6 Spherical shape and distribution of R.S.-AgNPs (N=3

Methods:

AgNPs Journey

C) SEM and EDX:

igure 7 (A) SEM image (B) EDS spectrum (C) percentage relative composition of elements in R.S.-AgNPs (N=3).

Figure 3 Experimental Protocol of The Study. 3- Biological activity testing:

Results:

1- Biogenic Silver Nanoparticles (AgNPs):

Figure 4 A color change from colorless to dark brown was observed after optimizing reaction conditions, and this indicated the formation of AgNPs.

A) Anticancer:

B) Antibacterial:

Figure 10 Anti-bacterial activity represented as inhibition zones of R.S.-AgNPs agbacterial stains (N-3).

Figure 9 MDA-MB231 cell line under the microscope before and after had been treated with R.S-AgNPs.

Conclusion:

The utilization of *R.S.* extract in the synthesis of AgNPs demonstrated promising cytotoxic activity against various cancer cell lines. Moreover, such AgNPs treated with plant extracts enhanced antimicrobial activity against pathogenic strains, particularly *S. aureus*, and *E. coli.*

Reference:

