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Abstract: Temperature, as one of the most important factors in meteorological data analysis, is a 9 

variable parameter with severe changes in different periods. The trend of temperature changes over 10 

time is also particularly important to investigating climate change. In this research, using the data 11 

from the TRY Project, which includes meteorological data with an accuracy of 1 km grid and a time 12 

accuracy of 1 hour, the temperature parameter of the city of Berlin is selected and the average tem- 13 

perature of the urban area of Berlin was calculated at different temporal scales. In addition to find- 14 

ing the linear regression trend of average annual temperature increase, Fourier transforms analysis 15 

and the least squared error fitting method was used to investigate harmonic temperature fluctua- 16 

tions to find the main sinusoidal period. Further, with the statistical analysis of data in daily aver- 17 

ages and 1-hour intervals by considering medians of data as the benchmark for classification, 18 

months from April to October were determined as the hot months of the year, and hours from 9 to 19 

19 were determined as daytime. Based on the mentioned classification, it was found that while the 20 

median difference between hot and cold months is more than 12˚C, the median difference between 21 

days and nights for the hot and cold months’ data is 5.2 ˚C and 2.1 ˚C, respectively. With this clas- 22 

sification, the probability distribution of temperature was studied for each group, and the degree of 23 

similarity of this distribution with probability distribution functions such as normal, beta, gamma, 24 

and cosine were investigated. The separate analysis of the data categorized by this method had the 25 

highest degree of similarity with beta and normal functions. 26 
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 28 

1. Introduction 29 

Meteorology and analysis of meteorological data become important in the last two 30 

centuries, by evolving new laws of physics and mathematical, statistical, and Data Anal- 31 

ysis methods [1] (pp. 1-75). This importance includes a variety of approaches and methods 32 

to study, analyze, and predict weather and climate change studies and seasonal climate 33 

prediction [2] based on historical data, and different spatial scales are used to describe and 34 

predict weather on local, regional, and global levels. Air Temperature, one of the most 35 

important factors in meteorological data analysis, is a variable parameter with severe 36 

changes in different periods of the year cycle depending on geographical location. The 37 

trend of temperature changes over time is also particularly important to investigating cli- 38 

mate change, has a significant effect on different aspects of human life, and also is the 39 

main study for analyzing the UHI effect. The current study is concerned with the statisti- 40 

cal analysis of temperature historical data for a particular region of Berlin city in Germany 41 

data grids [3]. There are similar studies done for analyzing the temperature of the Berlin 42 

region with different approaches [4-6]. 43 

2. Materials and Methods 44 
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2.1. Data Source 45 

In this research, the data used from freely available data of the DWD Climate Data 46 

Centre, the hourly grids of air temperature for Germany (project TRY Advancement) [3], 47 

which includes meteorological data with spatial coverage of Germany, temporal coverage 48 

of 01.01.1995 - 31.12.2012 with a total volume of 200 GB, the spatial resolution of 1 km x 1 49 

km, hourly temporal resolution, and projection of ËTRS89 / ETRS-LCC, ellipsoid GRS80, 50 

EPSG: 3034 ,̈ in NetCDF file format, with air temperature parameter [1/10 °C] in 2m above 51 

ground in the data. Link to data: 52 

https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/Pro- 53 

ject_TRY/air_temperature_mean/ 54 

Temperature parameter for the urban area of Berlin city in Germany was selected 55 

from these coordinates: 12.87°E, 52.24°N to 13.96°E, 52.78°N. For this region, a 70*60 array 56 

of data points from the dataset was extracted and the average value of each array was 57 

calculated. These average temperatures for the Berlin region are the reference data for 58 

calculations and analysis in this study at different temporal scales including daily, 59 

monthly, and yearly. 60 

2.2. Materials 61 

To visualize and analyze the data, the Python computer program, and NetCDF4, 62 

Matplotlib, Pandas, Numpy, and Scipy modules are used widely. General tools for data 63 

visualization for this dataset are the matplotlib basemap toolkit from Cartopy for plotting 64 

2D data on maps in Python, contour plots, bar graphs, boxplots, and line plots. Other tools 65 

including mean, median, inter quantile range, histogram, rfft from Numpy, and signal, 66 

fftpack, norm, Gaussian, beta, optimize, and leastsq from Scipy were used for data analy- 67 

sis and other calculations [7-12]. 68 

2.3. Methodology 69 

The first approach to time-frequency analysis of temperate fluctuations and deter- 70 

mining the main periodicity was the Fast Fourier Transform (FFT) [13], and the fft tool 71 

from the Python Numpy module was used. Spectral analysis characterizes the important 72 

timescales of the variability of the data, and FFT gives very substantial speed improve- 73 

ments, especially as the length of the data series increases, although it does not use the 74 

phase information from the Fourier transform of the data implying that the locations of 75 

these variations in time cannot be represented [1]. To reconstruct the data by inverse Fou- 76 

rier transform, the Numpy ifft module was used. 77 

In addition to finding the linear regression trend of average annual temperature in- 78 

crease, the least squared error fitting method was used to investigate harmonic tempera- 79 

ture fluctuations to find the main sinusoidal period, and the correlation of the fitted func- 80 

tion and original data was calculated. Furthermore, Inter Quantile Range (IQR), Histo- 81 

gram, and probability distribution analysis were used for the graph and the classification 82 

of data divided by seasons and daytime. The choice of bin size used when plotting a bar 83 

chart can have a significant effect on the appearance of the final graph and the location of 84 

peaks [1,14] and also on fitting functions. Fitting on distribution probability was used to 85 

determine the best fitting among Normal, Gamma, Beta, and Cosine functions by calcula- 86 

tion of sum square error (SSE). 87 

3. Results 88 

The statistical average values of the Berlin region temperature for original hourly and 89 

daily average data are presented in Table 1. 90 

Table 1. Statistics for average values of the Berlin region temperature for hourly and daily average 91 
data. 92 

https://doi.org/10.5676/DWD_CDC/TRY_Basis_v001
https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/Project_TRY/air_temperature_mean/
https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/Project_TRY/air_temperature_mean/
https://doi.org/10.1016/C2017-0-03921-6
https://doi.org/10.1016/C2017-0-03921-6
https://doi.org/10.1016/j.scitotenv.2010.12.001
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Data mean max min median variance 
Standard 

deviation 

hourly 9.62 36.96 -20.61 9.61 70.05 8.37 

daily avg. 9.62 29.42 -16.38 9.95 61.55 7.85 

3.1. FFT 93 

The absolute values of Fast Fourier Transform (FFT array) for hourly data, demon- 94 

strate the main frequency of 1 year and 1 day respectively, shown in Figure 1 by a loga- 95 

rithmic timescale due to the length of data and large frequencies. 96 

 97 

Figure 1. FFT analysis of hourly temperature data for the Berlin city region. 98 

The frequency response and the power spectral density of hourly data are shown in 99 

Figure 2 (a, b), and the Inverse Fast Fourier Transform (IFFT) was calculated by filtering 100 

main frequencies (f) of the FFT values, which were driven by Equation 1 by considering 101 

frequencies with absolute amplitude values higher than the division of variance by the 102 

mean of FFT absolute values. 103 

f = numpy.abs(FFT) > (numpy.abs(FFT).var() / numpy.abs(FFT).mean() ), (1) 

The IFFT (reconstructed data), alongside The Residuals deviations from the original 104 

data, are plotted in Figure 2. 105 

 106 

Figure 2. FFT analysis of hourly temperature data for the Berlin city region. 107 
(a) Frequency response (absolute values of FFT) ; (b) Power Spectral Density;  108 
(c) Filtered main Frequencies response; (d) Original data, IFFT and Residuals. 109 

The statistical results of IFFT and Residuals are presented in Table 2. 110 
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By assuming the IFFT as the signal (with two main frequencies) and the Residuals as 111 

noise, The Signal to Noise Ratio (SNR) is equal to 3.03. 112 

Table 2. Statistical results of IFFT reconstructed data and Residuals for hourly data. 113 

Data mean median 
correlation co-

efficient 
variance 

Standard de-

viation 

IFFT 9.62 9.34 0.867 52.66 7.26 

Residuals 0.00 -0.03 0.498 17.38 4.17 

3.2. Linear regression & harmonic function 114 

Linear regression and harmonic fitted function analysis for the daily averages and 115 

hourly data are presented in Figure 3 with a detailed result in Table 3. Both analysis shows 116 

a linear trend increase of temperature equal to 0.0398˚C per year. 117 

 118 

Figure 3. Linear Trend and harmonic function fitted data. (a) daily averages data; (b) hourly data 119 
Fitting equation: y = a + b × t + c × sin(w1 × t + d) + e × sin(w2 × t + f). 120 

Table 3. Linear regression and harmonic function fitting results. 121 

Data a b c W1 d e W2 f 
Correlation 

Coefficient 

hourly 9.2596 
4.54×10-

06 
9.7036 0.00071 4.4319 -3.0584 0.2618 0.9036 0.860 

daily avg. 9.2613 0.00011 -9.7026 0.01720 7.5820 0.2481 0.2606 2.6463 0.876 

3.3. Classification & IQR & Boxplot 122 

With IQR analysis of data in daily averages and monthly intervals by assuming me- 123 

dians of data as the benchmark for seasonal and daytime classification, months with a 124 

median above the average of medians are considered as summer months, and the months 125 

with a median below the average of medians as winter. with the same method for hourly 126 

intervals, the data was labeled by day and night. The initial boxplot classified data for the 127 

month and of the year is demonstrated in Figure 4, and the related result for the hour of 128 

the day is demonstrated in Figure 5. 129 
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 130 

Figure 4. The average monthly temperature of Berlin region Boxplot. (a) month of the year; (b) 131 
monthly data grouped by season. 132 

 133 

Figure 5. The hourly temperature of Berlin region Boxplot. (a) hour of the day; (b) hourly data 134 
grouped by season and daytime. 135 

3.4. Distribution & Fitting 136 

The histograms of the daily averages are presented in Figure 6, and probability dis- 137 

tribution and fitting functions for hourly data are presented in Figure 7. 138 

 139 

Figure 6. Histogram and fitting functions of the daily average temperature of the Berlin region. (a) 140 
Histogram and IQR by season; (b) Histogram and IQR by month. 141 

 142 

Figure 7. Probability distribution and fitting functions, the hourly average temperature of Berlin 143 
region. (a) All data; (b) Summer; (c) Winter. 144 
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4. Discussion 145 

This investigation draws upon relevant studies such as the work on precipitation and 146 

temperature trends in Ottawa, Canada [15], which provides valuable insights into long- 147 

term weather data analysis. Additionally, another study focusing on change point detec- 148 

tion in European air temperature series [16] contributes methodologies for identifying 149 

shifts in temperature patterns. Furthermore, Lemoine-Rodríguez et al. [17] shed light on 150 

Intraurban heterogeneity in land surface temperature trends within diverse climate cities, 151 

Kunz et al. [18] extended their analysis back to 1779 in the Karlsruhe temperature time 152 

series. Lastly, the research by Golechha et al. [19] emphasizes the significance of temper- 153 

ature trend analysis for early warning systems in Indian cities. Further studies are possible 154 

to use different methods for analyzing meteorological time-series data such as machine 155 

learning and wavelet analysis, also for a statistical study of extreme temperatures and 156 

other variables. 157 

5. Conclusions 158 

Without predefinition of season, months numbered 4 to 10 were determined as sum- 159 

mer, and hours from 9 to 19 were determined as day hours, by considering medians of 160 

data as the benchmark for classification. While the mean temperature in this period is 161 

9.62˚C with a range of -20.61˚C to 36.96˚C, the median difference between the summer and 162 

winter months is 12.32˚C, and the ratio of the median difference between days and nights 163 

for these seasons is 2.46. The highest degree of similarity of the probability distribution 164 

with the minimum SSE is with the beta function by a range of 0.00126 and 0.00135. The 165 

result is beneficial to understand the natural behavior of temperature cycles, and seasonal 166 

classification and to predict its further trend. 167 
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