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Abstract:
An increase in secondary complications, hypercholesterolemia, diabetes mellitus, and blood pressure leads to
an increase in the risk of vascular diseases (VDs), causing more mortality and morbidity globally. VDs include
the abnormal functioning of coronary, carotid, vertebral, cervical, visceral, abdominal, aortic, and peripheral
vessels. Complications of microcirculation due to peripheral vascular insufficiency have received considerable
attention owing to venous and arterial diseases. In such complicated situations, LTA4H, CASP3, ALOX5, PTGS1,
and PTGS2 are considered significant protein targets. For example, LTA4H and ALOX5 are associated with
atherosclerotic plaque formation, inflammation, and instability; CASP3 is involved in the apoptosis of vascular
smooth muscle cells, while PTGS is involved in peripheral vascular resistance, platelet aggregation, vascular
inflammation, and vasoconstriction. Thus, targeting expressions of these proteins could provide beneficial
effects in combating the complications of vascular diseases. Thymoquinone (TQ) is one such active
phytoconstituent found in the seeds of Nigella sativa, which possesses anti-inflammatory, antioxidant,
antimicrobial, immunomodulatory, analgesic, anticancer, and antipyretic effects; however, it has not been
explored for its activity in vascular complications. Accordingly, an in-silico investigation has been designed to
evaluate the activity of TQ on the expression of proteins involved in VDs using molecular docking approaches.
The findings suggested a strong molecular interaction between TQ and the set targets. The docking profile
depicted the binding affinity of TQ with LTA4H, CASP3, ALOX5, PTGS1, and PTGS2 having energies of -7.4 to
-5.7 kcal/mol. Therefore, it can be concluded that TQ can be a potential phytoconstituent for vascular
complications; however, more in-vitro and in-vivo studies are required.
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Figure 1. Biological activities of thymoquinone [1,2]

Complications of vascular diseases [3]
• Vasoconstriction
• Peripheral vascular resistance
• Platelet aggregation
• Vascular inflammation
• Atherosclerotic plaque formation

Despite having a wide range of biological activities, TQ is not widely explored for 
vascular diseases.

• LTA4H, CASP3, ALOX5, PTGS1, and PTGS2
are involved in various pathophysiological
complications of vascular diseases.

• These proteins control apoptosis of
smooth muscles, platelet aggregation,
inflammation, plaque formation,
instability, and vascular resistance. [3]
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Materials and methodology

1. Retrieval of target protein
The 3-dimensional structures of PTGS1 (PDB ID: 3N8W) [4], PTGS2 (PDB ID: 5F19) [5],
ALOX5 (PDB ID: 3O8Y) [6], LTA4H (PDB ID: 3B7S) [7], and CASP3 (PDB ID: 3GJR) [8]
were retrieved from RCSB Protein Data Bank.

2. Retrieval of ligand
The 3-dimensional chemical structure of Thymoquinone molecule was downloaded 
from PubChem database in PDB format. 

3. Preparation of target protein
The protein structure was cleaned using AutoDock Tools [9] by,
• Deleting the water molecules
• Adding polar hydrogen
• Assigning the Kollman Charges
• Saving the protein in .pdbqt format
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Materials and methodology

4. Identification of the active binding site
The active site was identified by analyzing the proteins’ binding site through PyMOL
software [10].

5. Assessment of binding energy and interactions
• Grid box was assigned on the proteins’ active site.
• Molecular docking was performed using AutoDock Vina based on scoring

functions.
• Scoring and ranking were based on binding energies of the docked ligand-protein

poses.
• The binding site was visualized and binding interactions with the residues were

studied using BIOVIA Discovery Studio Visualizer [11].
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Result and discussion

Compound Target PDB ID
Binding energy 

(kcal/mol)
H-bonding

TQ PTGS1 3N8W -7.4
Leu352, Ile523, Gly526, 

Ala527, Ser530

TQ PTGS2 5F19 -7.2

Ala199, Ala202, Gln203, 
Thr206, His207, Phe210, 
Tyr385, His386, Trp387, 

His388

TQ ALOX5 3O8Y -6.6 Arg370, Ala453

TQ LTA4H 3B7S -6.3
Gly268, Gly269, His295, 
Gln296, Tyr383, Arg563

TQ CASP3 3GJR -5.7 Lys137, Tyr195, Tyr197

Table 1. Binding energies and hydrogen-bonding interaction of TQ with the target receptors.
The binding energies are in the range of -7.4 to -5.7, which suggests strong binding interaction
between the compound and the protein targets.
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Result and discussion

Figure 2. Binding interaction between TQ and (a) PTGS1 (b) PTGS2 (c) ALOX5 (d) LTA4H (e) CASP3, showing the
binding pockets of the protein targets and the H-bond interactions.

(a) (b) (c)

(d) (e)
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Conclusion

• The molecular interaction between TQ and the identified target proteins of vascular

diseases shows good binding energy.

• However, TQ suffers from low bioavailability and permeability, which is required to be

optimized for formulation development toward improvement of bioavailability.

• Formulating nanocarriers of the hydrophobic TQ might solve the drug delivery issues.

• Molecular docking study revealed a strong interaction of the drug to the set targets

for the treatment of VD.

• To establish the efficacy of TQ on VDs, further in-silico evaluation of the

pharmacodynamic potential of the agent would be useful.

• Furthermore, in-vitro and in-vivo research findings are required to validate the

results.
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