Synthesis and biological evaluation of 2-azetidinone derivatives with antiproliferative activity in breast cancer and chemoresistant colon cancer

Azizah M. Malebari¹*, Brendan Twamleyb², Darren Fayne³, Mary J. Meegan⁴

¹Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; <u>amelibary@kau.edu.sa</u>. ²School of Chemistry, Trinity College Dublin, Dublin 2, Ireland ³Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland ⁴School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland

Introduction

- Stilbene-based compounds are widely occurring natural products and demonstrate a range of biological activities ^[1]
- Combretastatin A-4 (CA-4) shows potent anticancer activity in many human cancer cells together with inhibition of tubulin polymerisation and antivascular effects ^[2]
- The 3,5-dihydroxyphenyl substitution pattern is characteristic of stilbenes such as well-known natural polyphenolic stilbene
 resveratrol with reported therapeutic and chemopreventive properties in colorectal and skin cancers ^[3]
- We have previously investigated the antiproliferative activity of the 1,4-diarylazetidin-2-one (β-lactam) scaffold in MCF-7 breast cancer cell lines and the chemoresistant HT-29 colon cancer cells ^[4]
- A 3,5-dimethoxy ring A β-lactam compound with comparable activity to the 3,4,5-trimethoxy ring A of CA-4 and β-lactam compounds was previously reported^[5]

Resveratrol

- In this work, we focused on the design of a panel of 1,4-diaryl-2-azetidinones containing different C-3 and ring B substituents together with the 3,5-dimethoxyphenyl-substituent at N-1 replacing the 3,4,5-trimethoxyphenyl Ring A of the antimitotic combretastatin CA-4
- 3,5-Dimethoxy ring A β-lactams could be promising leads for the development of anti-breast cancer drugs that target tubulin

Scheme 1: Synthesis of β -lactams **2a-r.** Reagents and conditions: (a) H₂O, 30 min, 20 °C (85 - 97%). (b) Compounds **2a-2j**: Triethylamine, acid chloride [C₆H₅CH₂COCI, C₆H₅OCH₂COCI, CICH₂COCI, Cl₂CHCOCI, CH₃CH=CH-COCI or CH₃COOCH₂COCI], toluene, reflux, N₂, 5 h., (11-31%). (c) Compounds **2k-2n** (i) CH₃COOCH₂COCI, toluene, reflux, N₂, 5 h., (11-31%), (ii) NH₂NH₂.2HCI,Triethylamine, MeOH, reflux, 4 h. (d) Compounds **2o-2r**: Ethylbromoacetate, Zn dust, TMSCI, 40 °C, 15 min, then 100 °C, 2 min, microwave, C₆H₆, 100 °C, 30 min, microwave; Products obtained as racemic mixtures, one enantiomer illustrated.

 and ethyl bromoacetate
 Structures of products were confirmed by ¹H and ¹³C NMR, IR,

Antiproliferative Activities

- A small library of structurally diverse 1,4diaryl-2-azetidinones containing phenyl, chloro, hydroxyl, vinyl and phenoxy substituents at C-3 of β-lactam, together with the 3,5-dimethoxyphenylsubstituent at N-1 replacing the 3,4,5trimethoxyphenyl Ring A of CA-4 were evaluated.
- Ring A substituents included 4-OCH₃, 4-OCH₂CH₃, 4-SCH₂CH₃.
- Tripodi et al. had previously reported a 3,5-dimethoxy ring A β-lactam compound 2k which demonstrated comparable activity to the 3,4,5-trimethoxy ring A of CA-4 and β-lactam compounds ^[5]
- The most potent antiproliferative compounds in the present series with activity in nanomolar range were compounds 2a (3-phenyl), 2e (3-phenoxy), 2l (3-hydroxy), 2m (3-hydroxy), 2o (3-unsubstituted), (IC₅₀

2-azetidinone derivatives bea	aring 3,5
dimethoxyphenyl substituen	t at N-1

Compound	R ¹ N O H ₃ CO	MCF-7 IC ₅₀ (μM)ª	cLog P ^e	
2 a	$R^1 = C_6 H_5, R^2 = H, X = OCH_3$	0.025 ± 0.003	4.416	
2b	$R^{1}=C_{6}H_{5}, R^{2}=H, X=OCH_{2}CH_{3}$	0.055 ± 0.01	4.945	
2c	$R^{1}=C_{6}H_{5}, R^{2}=H, X=SCH_{3}$	0.063 ± 0.006	5.056	
2d	$R^{1}=OC_{6}H_{5}, R^{2}=H, X=OCH_{3}$	0.054 ± 0.01	4.7015	
2 e	$R^1 = OC_6H_5$, $R^2 = H$, $X = OCH_2CH_3$	0.015 ± 0.007	5.2305	
2 f	R ¹ = Cl, R ² =H, X=OCH ₃	0.680 ± 0.16	3.941	
2g	R^1 = Cl, R^2 =H, X= OCH ₂ CH ₃	0.045 ± 0.01	4.47	
2h	$R^1 = R^2 = CI, X = OCH_3$	6.612 ± 2.0	5.124	
2 i	$R^1 = R^2 = CI, X = OCH_2CH_3$	0.273 ± 0.01	5.653	
2j	$R^{1}=C_{2}H_{3}, R^{2}=H, X=OCH_{3}$	H, X=OCH ₃ 0.170 ± 0.07 3	3.622	
2k ^[5]	R ¹ = OH, R ² =H, X= OCH ₃	0.015 ± 0.007 2.595		
21	R_1 = OH, R^2 =H, R_2 =H, X= OCH ₂ CH ₃	0.003 ± 0.0009	3.124	
2 m	R ¹ = OH, R ² =H, X=SCH ₃	0.023 ± 0.002	3.235	
2n	R ¹ = OH, R ² =H, X=SCH ₂ CH ₃	0.031 ± 0.006 3.764		
20	R ¹ = H, R ² =H, X= OCH ₃	0.055 ± 0.01 2.858		
2р	R^1 = H, R^2 =H, X= OCH ₂ CH ₃	0.063 ± 0.006 3.387		
2q	R ¹ = H, R ² =H, X=SCH ₃	0.244 ± 0.09 3.498		
2 r	R^1 = H, R^2 =H, X=SCH ₂ CH ₃	0.123 ± 0.08 4.027		
CA-4		0.0039±0.00032	3.323.	

CA-4

Evaluation of in vitro cytotoxicity via lactate dehydrogenase (LDH) assay

60 -

40 -

20

Compound (10 mM)

OCH₂CH₃

LDH

%

O

2e

H₃CO

- MCF-7 cells were treated with the most potent compounds and CA-4 at 10 µM concentration for 24 h period
- The majority of the compounds demonstrated minimal cytotoxicity (<3.5% at 10 μM concentration), apart from compound **2f** (8.9%).

Molecular Modelling in the colchicine binding site (PDB entry 1SA0)

- The best ranked docked pose of compound 2e showed that methoxy groups at positions 3 and 5 of Ring A in compounds 2e makes favourable interactions with the hydrophobic residues Val β315, Ala β316, Ala β317, Val β318, Leu β242, Leu β248, Leu β252 and Ala β 250 of the tubulin binding site to confer the required binding stabilisation for these compounds
- It is interesting that the lack of the 4-methoxy substituent of Ring A does not result in loss of activity

values in MCF-7 cells 25, 15, 3, 23, 55 nM respectively), together with 2k (IC₅₀ =15 nM).

		0.102 ± 0.01
2р	R^1 = H, R^2 =H, X= OCH ₂ CH ₃	0.115 ± 0.02
CA-4		4.165 ± 0.100

X-ray crystal structure of compounds 20, 2p, 2k and 2i

Conclusion

- The inclusion of the 3,5-dimethoxyphenyl substituent at N-1 replacing the 3,4,5-trimethoxyphenyl substitution pattern which is present in the combretastatin-type antimitotic stilbenes has produced novel 2-azetidinone products with potent antiproliferative activity in MCF-7 and similar activity in HT-29 colon cancer cells, indicating structural diversity for C-3 β-lactam substituents.
- The most potent compound identified as the novel compound **2I**
- Low levels of % LDH released were obtained (2-9%) at 10 μ M confirming low cytotoxicity for the compounds in the MCF-7 cell line.
- The structural study of these compounds will facilitate further design of more effective and diverse β-lactams for potential development in breast and chemoresistant colon cancer applications.

References

Leu248

- 1. Pecyna, P., et al., More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules, 2020. 10(8).
- 2. Greene, L.M., M.J. Meegan, and D.M. Zisterer, Combretastatins: more than just vascular targeting agents? J Pharmacol Exp Ther, 2015. 355(2): p. 212-27.
- 3. Ahmadi, R. and M.A. Ebrahimzadeh, Resveratrol A comprehensive review of recent advances in anticancer drug design and development. Eur J Med Chem, 2020. 200: p. 112356.
- 4. Malebari, A.M., et al., beta-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. Eur J Med Chem, 2020. 189: p. 112050.
- Tripodi, F., et al., Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J Med Chem, 2012. 55(5): p. 2112-24.

The 9th International Electronic Conference on Medicinal Chemistry 01–30 November 2023 | Online