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Abstract: 29.5 million people aged 12 and older met the diagnostic criteria for alcohol use disorder 11 

(AUD) in the United States in 2021, which presents a significant social and economic burden to 12 

modern society. Impaired nutritional status has been frequently documented in patients with AUDs 13 

and could contribute to escalated alcohol consumption and behavioral impairments commonly 14 

observed in AUD. Interestingly, increased highly palatable food intake during recovery has been 15 

reported in patients with AUD, suggesting the importance of understanding the relationship 16 

between palatable food and problematic alcohol drinking. We have previously shown that 17 

patterned feeding of a palatable diet attenuated alcohol drinking in Long Evans rats. The present 18 

study evaluated the impact of patterned feeding on high and low alcohol drinking. Individually 19 

housed male high drinking (P), moderate drinking (Long Evans), and low drinking (Wistar) rats 20 

received intermittent access (24 hours, Tuesdays, and Thursdays) to a nutritionally complete high 21 

fat diet (Int-HFD) or standard chow (controls). Normal chow and water were available ad libitum 22 

to all groups of rats. Intermittent HFD access induced a feeding pattern in which the Int-HFD group 23 

of rats escalated their caloric intake on Tuesdays and Thursdays. Two weeks of Int-HFD pre-24 

exposure preceded any alcohol access, after which all rats were given unsweetened alcohol (20% 25 

v/v) in their home cages via a two-bottle choice paradigm of voluntary alcohol drinking. Alcohol 26 

was available for 24 hours on chow only days (Mondays, Wednesdays, Fridays) while Int-HFD 27 

feeding continued. Long Evans rats receiving the Int-HFD displayed a significant ~50% reduction 28 

in alcohol drinking when compared to controls. The Int-HFD group of P rats also reduced their 29 

alcohol intake significantly (p<0.05), ~20%, in comparison to respective controls. Interestingly, 30 

alcohol drinking in Wistar rats was not affected (p>0.05) by intermittent HFD exposure. These data 31 

highlight rat strain specific differences in alcohol intake following patterned feeding of a palatable 32 

diet and identify Long Evans rats as an ideal model to evaluate impact of palatable diet on alcohol 33 

drinking. 34 
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 37 

1. Introduction 38 

Alcohol use disorder (AUD) is a debilitating disorder which significantly impacts an 39 

individual’s health and ability to function and has extensive economic impacts. An 40 

estimated 140,000 people die annually of alcohol-related causes [1] and the life expectancy 41 

of someone with AUD has been shown to be reduced by as much as 28 years when 42 

compared to healthy individuals [2]. Additionally, when measured in disability-adjusted 43 

life-years, alcohol misuse contributes significantly to years of life lost due to improper 44 

health or disability [3]. In 2010, the cost of alcohol misuse in the United States (US) totaled 45 
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$249 billion and $191.1 billion of this financial burden was attributed to binge drinking 1 

[4]. 2 

Impaired nutritional status is frequently reported in patients with AUD along with 3 

emotional and physiological abnormalities. The cause of nutritional deficiency in this 4 

population is multifaceted, impacted by reduced nutritional intake, altered nutrient 5 

absorption, and changes in nutrient metabolism [5-7]. Particularly, deficiencies in 6 

vitamins and minerals have been widely reported in people with AUD [8]. For example, 7 

Vitamin B12 and C levels are negatively impacted by excessive alcohol consumption and 8 

are associated with cognitive dysfunction [9-10]. Vitamin D is another essential nutrient 9 

affected by chronic alcohol intake and these deficiencies have been implicated in increased 10 

negative affect [11]. Importantly, unlike other substances of abuse, alcohol contains 11 

calories and when the calories from alcohol replace those typically obtained from a 12 

healthy diet, nutritional status is negatively affected. In individuals with severe AUD 13 

more than 30% of daily caloric intake could be derived from alcohol alone, which 14 

negatively affects dietary carbohydrate, fat, and protein intake [12]. Together, a 15 

compromised nutritional status as a result of chronic alcohol consumption could impair 16 

health and could contribute to AUD and related pathologies. 17 

Interestingly, increased preference for palatable diets (PDs), or food high in sugar 18 

[13–15] and carbohydrates [14], have been observed in people with AUD during recovery, 19 

suggesting potentially protective effects of increased PD intake in people with AUD [13-20 

15]. Furthermore, Alcoholics Anonymous also suggest sweet-tasting foods consumption 21 

to curb alcohol cravings [16]. Several preclinical studies from our laboratory and others 22 

have also evaluated the impact of PD consumption on alcohol drinking [17-19]. For 23 

example, our lab has previously demonstrated reduced alcohol deprivation effect 24 

following intermittent high-fat diet (Int-HFD) access [17] and attenuated alcohol drinking 25 

following two weeks of Int-HFD pre-exposure [18] in Long Evans rats. The objective of 26 

the present study was to compare the impact of two weeks of Int-HFD pre-exposure on 27 

subsequent alcohol drinking in lower-drinking Wistar rats, moderately drinking Long 28 

Evans rats, and higher-drinking P rats.  29 

2. Materials and Methods 30 

2.1. Animals 31 

Male Wistar (RccHan® : WIST, Envigo RMS, Inc, Indianapolis, IN), Long Evans 32 

(HsdBlue: LE, Envigo RMS, Inc, Indianapolis, IN) and alcohol-preferring (P) rats (Indiana 33 

University) were used. The vivarium was controlled for temperature (~70F) and humidity 34 

(~60%) with a 12-hour reverse light-dark cycle (lights on from 1:00 AM to 1:00 PM). On 35 

arrival, animals were handled before any experimental manipulation or baseline data 36 

(body weight, food intake, water intake) were collected.  37 

2.2. Diet and Alcohol 38 

All animals had ad libitum access to standard rodent chow (Tekland-Envigo Diets 39 

#2020X, 3.1 kcal/g with 16% calories from fat and 60% calories from carbohydrates) and 40 

tap water. The experimental group was given intermittent access to a high-fat diet (HFD; 41 

Research Diets #D03082706, 4.5 kcal/g with 40% calories from fat, 46% calories from 42 

carbohydrates, and 7.9% calories from sugar) in addition to standard chow. 190 proof 43 

alcohol was purchased from Greenfield Global, MI and the desired 20% v/v was prepared 44 

at least one day in advance every week. Voluntary alcohol consumption was measured in 45 

home cages with a 2-bottle choice paradigm and the position of the alcohol and water 46 

bottles were switched daily to minimize conditioning effects. Food, alcohol, and water 47 

were provided ~2 hours into the dark cycle, and intake was measured manually after 24 48 

hours of access.  49 

 50 
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Figure 1. Schematic representation of patterned feeding and alcohol access schedules. Green boxes 2 

represent high-fat diet (HFD) access, yellow boxes represent chow access, and the grey bottles 3 

represent alcohol access. (A) Intermittent high-fat diet (Int-HFD) rats were given 2 weeks of 4 

intermittent 24-hour HFD access (Tuesday and Thursday) while controls received additional chow. 5 

(B) Following HFD pre-exposure, rats received alcohol access on chow only days (Monday, 6 

Wednesday, Friday) simultaneous to Int-HFD feeding. 7 

2.3. Procedure 8 

Male rats (n=6) matched for body weight, food intake, and water intake were 9 

randomly divided into control and Int-HFD groups. To evaluate the effect of Int-HFD 10 

feeding on subsequent alcohol intake, Int-HFD rats were given 24-hour, intermittent 11 

(Tuesday, Thursday) access to the HFD for two weeks prior to alcohol exposure (see 12 

Figure 1A). Following Int-HFD pre-exposure, alcohol consumption was measured on 13 

chow-only days (Monday, Wednesday, Friday) while intermittent HFD feeding continued 14 

(see Figure 1B). 15 

3. Results and Discussion 16 

Consistent with our previously published data, all groups of Int-HFD rats displayed 17 

caloric overconsumption on HFD access days. Long Evans rats displayed a gradual 18 

increase in alcohol drinking over time, an effect significantly (50%) reduced in the Int-19 

HFD group of rats. When evaluated under identical conditions, alcohol intake in Int-HFD 20 

P rats was also significantly (~20%) reduced compared to chow controls, whereas no effect 21 

of Int-HFD on alcohol intake was evident in Wistar rats. Together, intermittent access to 22 

HFD differentially impacted alcohol intake in low, moderate, and high drinking rats with 23 

greater effects seen in moderate drinking Long Evans rats. The present study emphasizes 24 

strain specific differences in the effect of an intermittent HFD on subsequent alcohol 25 

intake. 26 

It is important to note that several critical factors could impact alcohol drinking 27 

following dietary manipulations. For example, significant differences in the behavioral 28 

effects of a high-sugar diet and a high-fat diet have been previously identified [20], 29 

emphasizing dietary content as a factor requiring further evaluation. Furthermore, the 30 

length of PD exposure may have an impact on alcohol drinking. In the present study, all 31 

the experimental parameters were kept constant between rat strains and there was no 32 

significant change in body weight observed in any Int-HFD rats when compared to 33 

respective controls throughout the experiment. Interestingly, a previous study reported 34 

attenuated alcohol intake in Wistar rats following 3-4 weeks of junk-food diet (averaging 35 

42% fat, 52% carbohydrates, 6% protein) access. In contrast to the present study, junk-food 36 
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diet feeding induced an obesity phenotype [19], emphasizing the potential impact of PD 1 

access periods duration. 2 

In alignment with previous published reports, Wistar rats in the current study 3 

displayed a low initiation of alcohol drinking and minimal escalation of intake over time. 4 

On the other hand, P rats displayed a high initiation of alcohol drinking, maintained 5 

throughout the testing period. Interestingly, pervious studies comparing blood alcohol 6 

levels (BALs) during an intermittent alcohol access paradigm reported higher BALs in 7 

Long Evans rats when compared to Wistar and P-rats. Even with lower alcohol intake, the 8 

amount of ethanol consumption required by P rats and Wistar rats to reach the same 9 

pharmacologically relevant blood ethanol content (BEC) was greater than that required 10 

by Long Evans rats [21-23]. We have previously reported involvement of central 11 

mechanisms in mediating the effects of an intermittent HFD on alcohol drinking, as 12 

selective alterations in the neurotransmitter receptor expression in brain reward circuitry 13 

were observed in Int-HFD Long Evans rats when compared to chow controls [18]. 14 

Therefore, the low alcohol drinking levels and likely lower BALs of the Wistar rats in the 15 

present study could explain lack of intermittent HFD access effects on alcohol drinking, a 16 

contention needing further evaluation.  17 

4. Conclusions 18 

In conclusion, there was no observed effect of intermittent HFD access on alcohol 19 

intake in the low-drinking Wistar rats. Int-HFD P rats displayed significantly attenuated 20 

alcohol intake (20%) when compared to the chow controls, however the effect was smaller 21 

than that observed in Int-HFD Long Evans rats (50%). These results emphasize rat strain 22 

specific differences in the effect of an Int-HFD on subsequent alcohol intake and warrant 23 

future investigation. Nevertheless, this study identifies Long Evans rats as a potentially 24 

ideal model for evaluating central mechanisms of diet-induced effects on alcohol intake.  25 
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