environmental sciences

proceedings

Proceeding Paper

Enhancing Photon Transport Simulation in Earth’s Atmosphere:
Acceleration of Python Monte-Carlo Model Using Vectorization

and Parallelization Techniques ¥

Jona Briigmann 1 Dmitry Efremenko t*(and Thomas Trautmann

check for
updates

Citation: Briigmann, J.; Efremenko,
D.; Trautmann, T. Enhancing Photon
Transport Simulation. Environ. Sci.

Proc. 2023,1,0. https://doi.org/

Published:

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

t

Remote Sensing Technology institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, Germany;
jona.bruegmann@dlr.de (J.B.); Thomas.trautmann@dlr.de (T.T.)
* Correspondence: dmitry.efremenko@dlr.de
t These authors contributed equally to this work.
1 Presented at the 5th International Electronic Conference on Remote Sensing, 7-21 November 2023; Available
online: https://ecrs2023.sciforum.net/.

Abstract: Photon transport within Earth’s atmosphere is a vital aspect of atmospheric science. Accu-
rate modelling of radiative transfer is crucial for remote sensing data analysis. Yet, simulating the
photon transport in multi-dimensional models poses a significant computational challenge. Monte-
Carlo simulations are a common approach, but they demand a large number of photons for reliable
results. Parallelization techniques can be employed to accelerate Monte Carlo computations by
using multi-core CPUs and GPUs. This research delves into a comparative analysis of different
parallelization techniques for Python version of the Monte-Carlo model. We consider conventional
photon transport simulations that rely on iterative loops, multithreading technique, NumPy’s vector-
ization, and GPU acceleration via CuPy library. It is shown that CuPy, harnessing GPU parallelism,
significantly accelerates simulations, making them suitable for large-scale scenarios. It is shown that
as the number of photons grows, the overhead from reading and retrieving data to the GPU decreases
making the CuPy library an effective and easy-to-use option for Monte-Carlo simulations.

Keywords: Monte-Carlo method; radiative transfer; parallel computing; GPU computing

1. Introduction

Photon transport within Earth’s atmosphere plays a pivotal role in advancing our
understanding of atmospheric science, enabling precise remote sensing techniques, and
facilitating the development of accurate climate models. The behavior of photons as
they traverse the atmosphere, interacting with various atmospheric components such
as gases and aerosols, can be described by means of the radiative transfer equation [1,
2]. Accurate modeling of these interactions is paramount for obtaining meaningful and
quantitative insights from remote sensing data. In the context of the rapidly evolving
field of remote sensing and the emergence of new sensors such as Sentinel 5 with fine
spatial resolution, it has become increasingly important to design fast and accurate multi-
dimensional radiative transfer models. These models are essential for interpreting the
data generated by modern sensors and extracting valuable information about our planet’s
atmosphere and surface. However, this endeavor poses a computational challenge when
dealing with multi-dimensional models.

One commonly employed technique to address the intricacies of multi-dimensional
photon transport is Monte Carlo simulations [3]. These simulations, while powerful in their
ability to yield reliable statistical data, require the consideration of a vast number of photons.
In particular, according to the central limit theorem, the error of Monte-Carlo simulations is
proportional to the inverse square root of the number of photons that went into the result,
and a huge number of photons are required to obtain accurate solutions in Monte-Carlo

Environ. Sci. Proc. 2023, 1, 0. https:/ /doi.org/10.3390/0 https:/ /www.mdpi.com/journal /environsciproc

https://www.mdpi.com/article/10.3390/0?type=check_update&version=1
https://doi.org/10.3390/0
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0002-7449-5072
https://ecrs2023.sciforum.net/
https://doi.org/10.3390/0
https://www.mdpi.com/journal/environsciproc

Enwviron. Sci. Proc. 2023, 1,0

20f7

simulations. Despite of this drawback, the Monte-Carlo method has proved to be very
efficient for solving the radiative transfer equation in inhomogeneous and broken clouds [4—
6] as well as assessing the corresponding influence on retrieval results [7-9]. To accelerate
these simulations and fully harness the capabilities of modern computing hardware, such
as multi-core CPUs and GPUs, efficient parallelization techniques are essential. Monte
Carlo simulation of photon transport in the atmosphere is a highly parallelizable problem,
given that photons can be propagated independently while adhering to identical rules.
The potential for achieving remarkable computational efficiency through GPU calculations
using the Monte Carlo method was first demonstrated in early 2008 [10].

This research aims to contribute to the ongoing efforts to enhance the computational
efficiency of photon transport simulations by conducting a comparative analysis of several
simulation techniques. These techniques encompass traditional iterative loops, vectorized
operations using the NumPy library, and the GPU-accelerated capabilities of CuPy [11].

In this pursuit, we explore the trade-offs and performance benefits of each approach,
as well as assess the adaptability of these techniques to existing Python code structures
and the ease of transitioning from CPU-based calculations to GPU acceleration. Through
empirical experiments we demonstrate how these techniques impact simulation speed,
particularly highlighting the substantial performance enhancement provided by CuPy
when dealing with a significant number of photons. This investigation ultimately seeks
to provide valuable insights into the optimization of photon transport simulations, with a
focus on real-world applications in atmospheric science.

2. Monte-Carlo Overview

We have implemented a basic Monte-Carlo model in Python following the description
given in [12]. The main steps of the algorithm can be summarized as follows.

Initialization

For each simulated photon, we begin by defining its initial propagation direction,
which is characterized by three direction cosines (4, b, ¢) relative to the axes OX, OY, and
OZ respectively. In the context of a plane-parallel source, the photon’s initial position is
randomly selected from the top of the atmosphere.

Computation of the Step Size

Then the mean free path (i.e. the step size) is computed as

= —tIn(g), @

where 7 is the optical thickness of the medium in the current location of the photon (being
equal to the mean free path in this location), while ¢ is a random number in range (0, 1).

Photon Movement

Once a step size | and the direction cosines a, b and c are defined, the photon coordi-
nates x, y and z are updated as follows:

x < x+la, 2)
y<y+1b, (3)
z <4 z+le. 4)

Absorption and Scattering

With the probability equal to the single scattering albedo w, the photon can be absorbed.
As suggested in [2], instead of killing the photon, its weight can be reduced by a factor of a

Enwviron. Sci. Proc. 2023, 1,0

30f7

single scattering albedo. Then the scattering angle is computed from the single scattering
phase function. For scattering inside a cloud, we use the Henyey-Greenstein phase function.
In this case, the scattering angle ® can be chosen as

2
_ 1 2 1-¢°
cos @ = 2 <1+g (1—g+2g0¢) >, (5)

where ¢ is the asymmetry parameter, while « is a random number in range (0,1). For
scattering outside the cloud we use the Reyleigh phase function. The corresponding
scattering angle can be computed as

Cos®:i/z—l—\/zz—}-l—i—i/z—\/zz—%-l, (6)

where z = 2(2a — 1), and « is a random number in range (0,1). We define the direction
before scattering w’ = (a’,V’, ¢') and after scattering w = (a, b, ¢) through corresponding
direction cosines. The azimuth angle ¢ (i.e. the angle between the planes (w’,0Z) and
(w',w)) is chosen as a random number between 0 and 27. The new direction can be
computed using the following formulas:

_ 2

a=acos® — (b'sing+a'c’ cos ¢) 11((2705/2@),)
—c

, 1— (cos®))?2
b="b'cos® + (a’singp — b’ cos ¢) 1(_0/2)), 8)
c:c’cos®+c05(p\/(1— (cos ®)2)(1 — ¢'?).)

If ¢ = +1, instead of Egs. (7)-(9) we use the following formulas:

a =sin® cos ¢, (10)
b = sinO@sin g, (11)
c=c cos®. (12)

When a photon reaches the surface, we employ the Lambertian model, which implies
that the photon may be absorbed with a probability equal to the ground albedo. If the
photon is not absorbed, it is instead reflected back into the upper hemisphere, and this
reflection occurs with a uniform probability distribution across all possible angles.

Photon Termination

The photon travels through the atmosphere until it exits the atmosphere through
reflection. Additionally, to expedite computations, we can terminate the photon’s modeling
when either its statistical weight becomes negligible (with the corresponding threshold
determined experimentally) or its path length exceeds a specified limit.

3. Implementation

In this section, we provide outlines of certain implementation details that have been
taken into account.

3.1. For-Loop Based Implementation
Aforementioned steps are implemented in a function having the following from:

1 def trace_photon (i) :

Environ. Sci. Proc. 2023,1,0 40f7

2 <initialization>
while ((path_length<=max_path_length) and (not is_gone(x,y,z))):
4 <determine the step size>
<determine the scattering angles>
6 <update the direction cosines>
7 <update the position>
8 return photon_parameters

that provides photon parameters as it leaves the atmosphere such as the path length and
the direction cosines. Keeping that in mind, a custom implementation of the Monte-Carlo
algorithm that is based on the for-loop looks as follows:

photon_parameters_list = []
> for i in range (number_of_photons) :
photon_parameters = trace_photon (i)
1 photon_parameters_list.append (photon_parameters)
postprocess_data (photon_parameters_list)

In this simulation, photons are generated and their behavior is simulated within a for-loop,
while the collection and processing of statistical data occur after the loop has concluded.

3.2. Multithreading Implementation

A straight forward way to accelerate the computations on multicore CPUs is to use
multithreading library. The implementation looks as follows:

import multiprocessing

import os

num_processes = 0s.cpu_count ()

with multiprocessing.Pool (processes=num_processes) as pool:

N

5 photon_indices = list (range (number_of_photons)) # Replace with the actual number
of photons

s photon_parameters_list = pool.map (trace_photon, photon_indices)
7 postprocess_data (photon_parameters_list)

Here the pool of workers is created and a list of photon indices is generated. The number
of processes equal to the number of avaliable CPU cores. The pool is used to trace photons
in parallel resulting in a list of photon parameters.

3.3. NumPy Implementation

Vectorizing a Monte Carlo simulation code and using NumPy can significantly im-
prove the efficiency of the code by taking advantage of NumPy’s array operations and
optimizations. In this case, equations (1)-(12) have to be vectorized and the whole batch of
photons can be considered. For instance, 4, b and c are not single values but rather numpy
arrays for all photons in the batch.

def trace_photon_batch (N) :
<vectorized initialization for N photons>
<determine the step sizes for N photons>

4 <determine the scattering angles for N photons>

5 <update the direction cosines for N photons>

6 <update the positions for N photons>

7 <check which photons escape the atmosphere>

8 return photon_parameters_list

N

Note that certain photons may exit the atmosphere before others. To keep track of this,
we employ a separate array that maintains information regarding whether a photon has
already departed from the atmosphere. In such cases, photon parameters are no longer
updated. The vectorized version avoids explicit loops across photons and instead utilizes
masking. For example, considering Eq. (2) and assuming that the array is_gone at the i-th
position holds "True" if the i-th photon has escaped and "False" otherwise, the coordinate x
is updated as follows:

1 # Update x where is_gone is False
2 x[~is_gone] += 1l[~is_gone]~*a[~is_gone]

Enwviron. Sci. Proc. 2023, 1,0

50f7

N

3.4. CuPy Implementation

After vectorizing the code to utilize NumPy arrays, transitioning to GPU acceleration
using the CuPy library becomes straightforward. Essentially, the code remains unchanged,
except for replacing the import statement from NumPy to CuPy. For enhanced compatibility,
CuPy can be imported as 'np,” allowing for a seamless integration of GPU capabilities into
the existing codebase. This streamlined process empowers the code to harness the power of
GPUs while maintaining code consistency and simplicity. We also check if GPU is avaliable
and if that is the case, substitute NumPy with CuPy.

import torch
import cupy

3 # Check if CUDA (GPU) is available

o o

o

if torch.cuda.is_available() :
import cupy as np

, else:

import numpy as np
<vectorized Monte-Carlo code for numpy>

4. Results and Discussion

In this section, we conduct an efficiency assessment of the implemented methodologies.
Our testing scenario uses a three-dimensional box measuring 10 km in each dimension. At
its center, we introduce a cloud layer with an optical thickness of 1 km and dimensions
spanning 5 km along the x and y axes. The cloud’s upper boundary is situated at 6 km
above the ground. The simulations are performed for a wavelength of 350 nm and encom-
pass ozone absorption effects, utilizing the ozone profile derived from the US standard
atmosphere model.

The asymmetry parameter for the cloud phase function is specified as g = 0.7, with
a cloud single scattering albedo of 0.9. Beyond the cloud region, we adopt the Rayleigh
scattering phase function. The optical thickness of the cloud is set to 2.

In our simulation experiments, we use varying amount of photons, ranging from 10> to
10°. To ensure the reliability of elapsed time measurements, we execute the simulations 10
times for scenarios with a relatively small photon count, computing the mean computation
time. For CPU computations, we leverage an Intel Core i7 CPU running at 2.60 GHz with
12 cores, while GPU computations are conducted in a CoLab environment featuring the
Tesla T4 GPU.

The results of these experiments are presented in Table 1. The elapsed time for the
custom for-loop implementation exhibits a linear scaling relationship with the number
of photons. When employing a multithreading library on 12 cores, we observe nearly
an order of magnitude improvement in speed. The NumPy-based version outpaces the
for-loop implementation by almost two orders of magnitude, establishing itself as the most
efficient among those executed on the CPU. It’s noteworthy that the impact of vectoriza-
tion is an order of magnitude more efficient than the enhancement derived from explicit
multiprocessing.

Interestingly, transitioning from NumPy to CuPy does not yield performance improve-
ments for scenarios with fewer than 10° photons. This can be attributed to the overhead
incurred when transferring data between the CPU and GPU. However, as the workload
increases to > 10° photons, the CuPy implementation provides an order of magnitude
speedup compared to the NumPy version and a three-order speedup compared to the
for-loop implementation. It’s worth noting that the NumPy and CuPy versions share the
same code, with the only difference being the libraries they import.

Environ. Sci. Proc. 2023,1,0 60f7

Table 1. The computation time of Monte-Carlo simulations.

Number of Elapsed time, sec

photons for-loop multithreading NumPy CuPy
103 9 1.1 0.1 1.22
104 87 8.5 0.48 1.51
10° 803 9 6.3 6.5
100 8187 125 71 7.9
107 — — 690 62.6
108 — — 6857 592
10° — — — 5743

5. Conclusions

This paper explores several strategies to accelerate Monte Carlo simulations of photon
transport within Earth’s atmosphere in the context of a Python-based Monte Carlo model,
namely, traditional for-loop implementations, multithreading, vectorization using the
NumPy library, and GPU acceleration with CuPy.

Vectorizing the code with NumPy surpasses the for-loop implementation by nearly
two orders of magnitude in speed. However, the introduction of explicit multiprocessing
via a multithreading library on a multi-core CPU yielded a speedup factor slightly below the
number of cores. The transition from NumPy to CuPy, while initially incurring overhead
for data transfer between CPU and GPU, proved to be highly advantageous for large-
scale simulations. For workloads exceeding 10° photons, CuPy exhibited a one-order-of-
magnitude speedup compared to NumPy, and a remarkable three-order speedup compared
to the for-loop implementation. A notable advantage of CuPy lies in its ability to execute
the NumPy version on the GPU without necessitating code changes while still achieving
substantial performance enhancements. Note that a Fortran and C++ codes would require
a substantial code refactoring while transitioning from CPU to GPU.

Author Contributions: Conceptualization, J.B., D.E. and T.T.; writing—original draft preparation,
D.E.; writing—review and editing,].B. and T.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Marshak, A.; Davis, A., Eds. 3D Radiative Transfer in Cloudy Atmospheres; Springer-Verlag, 2005. https://doi.org/10.1007/3-540-
28519-9.

2. Mayer, B. Radiative transfer in the cloudy atmosphere. The European Physical Journal Conferences 2009, 1, 75-99. https:
//doi.org/10.1140/epjconf/e2009-00912-1.

3. Marchuk, G.I; Mikhailov, G.A.; Nazaraliev, M.A.; Darbinjan, R.A.; Kargin, B.A.; Elepov, B.S. The Monte Carlo Methods in
Atmospheric Optics; Springer Berlin Heidelberg, 1980. https://doi.org/10.1007/978-3-540-35237-2.

4. Prigarin, S.M.; Marshak, A. A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud-Top Height Fields.
Journal of the Atmospheric Sciences 2009, 66, 92-104. https://doi.org/10.1175/2008jas2699.1.

5. Zhuravleva, T,; Nasrtdinov, I. Simulation of Bidirectional Reflectance in Broken Clouds: From Individual Realization to Averaging
over an Ensemble of Cloud Fields. Remote Sensing 2018, 10, 1342. https://doi.org/10.3390/rs10091342.

6. Zhuravleva, T.; Nasrtdinov, I.; Chesnokova, T.; Ptashnik, I. Monte Carlo simulation of thermal radiative transfer in spatially
inhomogeneous clouds taking into account the atmospheric sphericity. Journal of Quantitative Spectroscopy and Radiative Transfer
2019, 236, 106602. https://doi.org/10.1016/j.,jqsrt.2019.106602.

7. Varnai, T.; Marshak, A. Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thickness
Retrievals. Journal of the Atmospheric Sciences 2002, 59, 1607-1618. https://doi.org/10.1175/1520-0469(2002)059<1607:00tdre>2.0.
co;2.

8. Marshak, A ; Platnick, S.; Vérnai, T.; Wen, G.; Cahalan, R.F. Impact of three-dimensional radiative effects on satellite retrievals of

cloud droplet sizes. Journal of Geophysical Research 2006, 111. https://doi.org/10.1029 /2005jd006686.

https://doi.org/10.1007/3-540-28519-9
https://doi.org/10.1007/3-540-28519-9
https://doi.org/10.1140/epjconf/e2009-00912-1
https://doi.org/10.1140/epjconf/e2009-00912-1
https://doi.org/10.1007/978-3-540-35237-2
https://doi.org/10.1175/2008jas2699.1
https://doi.org/10.3390/rs10091342
https://doi.org/10.1016/j.jqsrt.2019.106602
https://doi.org/10.1175/1520-0469(2002)059<1607:ootdre>2.0.co;2
https://doi.org/10.1175/1520-0469(2002)059<1607:ootdre>2.0.co;2
https://doi.org/10.1029/2005jd006686

Environ. Sci. Proc. 2023,1,0 70f7

9. Efremenko, D.S.; Doicu, A.; Loyola, D.; Trautmann, T. Fast Stochastic Radiative Transfer Models for Trace Gas and Cloud Property
Retrievals Under Cloudy Conditions. In Springer Series in Light Scattering; Springer International Publishing, 2018; pp. 231-277.
https://doi.org/10.1007 /978-3-319-70796-9_3.

10. Alerstam, E.; Svensson, T.; Andersson-Engels, S. Parallel computing with graphics processing units for high-speed Monte Carlo
simulation of photon migration. Journal of Biomedical Optics 2008, 13, 060504. https://doi.org/10.1117/1.3041496.

11. Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In
Proceedings of the Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS), 2017.

12. Progarin, M. Modelling of radiative transfer by means of Monte-Carlo method [in Russian]; Lambert Academic Publishing, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-319-70796-9_3
https://doi.org/10.1117/1.3041496

	Introduction
	Monte-Carlo Overview
	Implementation
	For-Loop Based Implementation
	Multithreading Implementation
	NumPy Implementation
	CuPy Implementation

	Results and Discussion
	Conclusions
	References

