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Abstract: The calculation of the R-factor (Rainfall erosivity) for implementation in soil erosion mod-

els such as USLE (Universal Soil Loss Equation) and RUSLE (Revised Universal Soil Loss Equation) 

en-counters substantial difficulties due to the scarcity of spatial databases in adequate resolution for 

actions of territorial planning at the local level. Otherwise, there is a spatial database available with 

a coarse resolution of themes that can be used to calculate the R-factor. We apply the spatial 

downscaling, based on regression models: linear (LN), general additive model (GAM), random for-

est (RF), cubist (CU), on erosivity data (target variable) prepared for the State of São Paulo, Brazil, 

with a spatial resolution of 2500 m. We used DEM and slope data with 30 m fine resolution from 

the Atibaia watershed, located between the metropolitan regions of São Paulo (RMSP) and Campi-

nas (RMC) to apply the downscaling. This framework improved the spatial resolution of the R-

factor, necessary to calculate soil loss in the USLE and RUSLE equations in a territory where the 

scarcity of data with the fine resolution is still limited to the development of territorial planning 

projects at the local level. The RF model was better with R2 0.94. 
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1. Introduction 

The spatial variable scale is directly connected to image resolution. There is a large 

diversity of spatial databases at the global level, at various spatial scales, that can be uti-

lized for research at the global, continental, and regional levels; however, these bases are 

not suited for usage at the local level, limiting their use in studies with higher spatial res-

olution. 

Earth surface databases, such as Digital Elevation Models (DEM), are easily accessi-

ble at a fine scale, allowing for local terrain analysis and the generation of other surface 

attributes such as slope or aspect. 

The downscaling process, which is frequently used in climate model research [1–4], 

modifies the spatial resolution of data using algorithms and regression functions. 

The application of the downscaling method to process earth resource information 

was proposed by Malone et al. [5], who developed the Caret package in R language, sup-

porting the use of this procedure in several areas of earth sciences [6–8], including terrain 

analysis [9]. 

Soil erosion research has produced a large amount of scientific output on regional 

and continental dimensions. However, analytical variables are difficult to find at the local 

level, hindering the growth of research in this field. 
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We used the downscaling approach proposed by Malone [5] in the database to refer 

to the R-factor prepared by Teixeira et al. [10] in the Atibaia watershed [11], State of São 

Paulo, Brazil (Figure 1). 

 

Figure 1. Study area—Atibaia watershed. RMSP: São Paulo Metropolitan Region and RMC: 

Campinas Metropolitan Region. 

2. Methodology 

The research methodology was divided into: (1) interpolation of R-factor data, (2) 

preparation of the fine database, consisting of DEM and slope and (3) downscaling. 

To create the R-factor image, the point shapefile generated by Teixeira et al. [10] was 

used. This data was interpolated, generating the R-factor image. 

The spatial downscaling methodology used in the present study was proposed by 

Malone et al. [5] who originated the Caret package in R language. In this methodology, 

the authors use coarse grid spatial data for fine grid mapping using predictive covariates 

and the Random Forest (“rf”), Cubist (“cubist”), MARS (“earth”) and Linear Model (“lm”) 

regression models. 

In the downscaling process, the minimum (5), maximum (10) number of iterations. 

Before modeling, the dataset was randomly split into a collection of training samples (70%) 

and test samples (30%) for model validation. The regression models were then applied. 

Regression results are analyzed in raster maps, a graphical representation of the per-

formance of regression models by graphing observed values versus predicted values and 

calculating R2 and RMSE values. 

3. Results 

Figure 2 illustrates the spatial results of the regression models. 
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Figure 2. Spatial results of the regression models (Unit: MJ mm ha−1 h−1 time unit−1). 

The Figure 3 and Table 1 illustrates the performance of each model according to ob-

served values versus predicted values. 

 

Figure 3. Models performance (Unit: MJ mm ha−1 h−1 time unit−1). 

Table 1. Models R2 and RMSE. 

Model R2 RMSE 

Cubist 0.136 488 

GAM 0.0130 521 

LM 0.0128 523 

RF 0.945 133 
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According to the performance results, the RF model is the most accurate of all the 

regression models evaluated. RF provided the highest R2 and lowest RMSE values, as well 

as less dispersion compared to the straight line between observed and predicted values. 

While the other models had very low R2 and higher RMSE values, as well as more disper-

sion of observed and projected values in comparison to the straight line, this suggested 

greater dispersion and error in the regression models. 

4. Conclusions 

This framework improved the spatial resolution of the R-factor, necessary to calcu-

late soil loss in the USLE and RUSLE equations in a territory where the scarcity of data 

with the fine resolution is still limited to the development of territorial planning projects 

at the local level. It may be an alternative to determining the essential factors using soil 

loss equations such as USLE and RUSLE in places with insufficient fine-scale geodatabase. 

The procedure adopted proved to be a methodology with the potential to expand the 

application of the downscaling procedure in data associated to soil loss research, allowing 

the use of global databases at a local level employing topography factors such as elevation 

and slope. Other topographical factors can be employed in future studies to investigate 

the feasibility of employing them to improve the accuracy of the statistical model in this 

method. 
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