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Abstract: The accurate estimation of Land Surface Temperature (LST) is a vital parameter in various 8 

fields, such as hydrology, meteorology, and surface energy balance analysis. This study focuses on 9 

the estimation of LST using data acquired from the Joint Polar orbiting Satellite System (JPSS) satel- 10 

lites, specifically JPSS-1/NOAA-20 and JPSS-2/NOAA-21. The methodology for this research centers 11 

on the utilization of the split window algorithm, a well-established and recognized technique re- 12 

nowned for its proficiency in extracting accurate Land Surface Temperature (LST) values from re- 13 

motely sensed data. This algorithm leverages the differential behavior of thermal infrared (TIR) ra- 14 

diance measured in two adjacent spectral channels to estimate LST, effectively mitigating the influ- 15 

ence of atmospheric distortions on the acquired measurements.  16 

To establish the accuracy of the proposed approach, the coefficients of the split window algorithm 17 

were determined through linear regression analysis, utilizing a dataset generated via extensive ra- 18 

diative transfer modeling. The calculated LST values were subsequently compared with LST prod- 19 

ucts provided by the National Oceanic and Atmospheric Administration (NOAA). The evaluation 20 

process encompassed the computation of root mean square error (RMSE) values, offering insights 21 

into the performance of the algorithm for both JPSS-1/NOAA-20 and JPSS-2/NOAA-21 missions. 22 

LST retrieval validation with standard atmospheric simulation indicates that the JPSS-1/NOAA-20 23 

and The JPSS-1/NOAA-21 algorithms have demonstrated an accuracy of 1.4 K in retrieval of LST 24 

with different errors. The obtained results demonstrate the potential of the split window algorithm 25 

to effectively estimate LST from JPSS satellite data. The RMSE values, 2.05 and 1.71 for JPSS- 26 

1/NOAA-20 and JPSS-2/NOAA-21, respectively, highlight the algorithm's capability to provide ac- 27 

curate LST estimates for different mission datasets. This research contributes to enhancing our un- 28 

derstanding of land surface temperature dynamics using remote sensing technology and showcases 29 

the valuable insights that can be gained from JPSS missions in monitoring and studying Earth's 30 

surface processes. 31 
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 34 

1. Introduction 35 

Land Surface Temperature (LST) is a fundamental element within the realm of land 36 

surface dynamics, capturing the intricate interplay between the Earth's surface and the 37 

surrounding atmosphere, as well as the exchange of energy between them [1-5]. LST 38 

serves a critical role in a wide range of applications, including the modeling of evapotran- 39 

spiration [6-7], the evaluation of soil moisture levels [8-10], and the exploration of climatic, 40 

hydrological, and ecological patterns [11-18]. LST is obtained from satellite data through 41 
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a process that involves correcting for atmospheric influences, addressing the absorption 42 

and emission of atmospheric surface emissivity and water vapor [20-35]. LST retrieval 43 

relies on the application of the split-window technique. The development of Split-Win- 44 

dow (SW) algorithms is rooted in variations associated with atmospheric effects and sur- 45 

face emissivity [19-20, 36-39].  46 

Surface emissivity corresponds to the radiative flux of thermal radiation emitted by 47 

a surface element. It is crucial for determining the thermal radiation from the Earth's sur- 48 

face and is a fundamental parameter that influences the accuracy and efficiency of LST 49 

retrieval. 50 

Hence, fluctuations in atmospheric transmittance are closely linked to the dynamics 51 

of water vapor content within the atmospheric profile for thermal channels [30]. In this 52 

paper, we compared operativity, performance and effectively from Joint Polar-orbiting 53 

Satellites JPSS-1/NOAA-20 and JPSS-2/NOAA-21 algorithms for retrieving LST NOAA 54 

data [40]. 55 

2. The radiative transfer equation role in land surface temperature estimation. 56 

The radiative transfer equation represents a fundamental principle, used in various 57 

fields of science and engineering, including astrophysics, atmospheric science, remote 58 

sensing, and heat transfer. It describes the transport of radiant energy such as electromag- 59 

netic radiation through a medium.  60 

The equation is particularly useful for understanding how energy is absorbed, scat- 61 

tered, and transmitted as it interacts with particles or substances within the medium. 62 

In clear sky conditions, the top-of-atmosphere radiance recorded by a space-borne 63 

sensor 
λsensor,L  comprises the surface emission contributions,  the atmospheric, 64 

upwelling and downwelling radiance 
λatm,L  and 

λatm,L  Reflected by the ground sur- 65 

face and altered by the atmosphere (equation 1). Retrieval algorithms depend on one or 66 

more top-of-atmosphere spectral measurements to account for atmospheric effects and 67 

estimate LST. 68 

   Lτ )Lε(1)B(TεL λatm,λλatm,λSλλsensor,
 +−+=

           
(1) (1) 

where, B(Ts) refers to the blackbody radiance as defined by Planck's law, Ts repre- 69 

sents the Land Surface Temperature, and ελ stands for the land surface emissivity.  70 

The Visible Infrared Imaging Radiometer Suite (VIIRS) LST is established through 71 

comparisons with ground-based measurements and LST products from other instru- 72 

ments, particularly the NOAA series of LST products.  73 

3. LST Inversion Techniques. 74 

Obtaining atmospheric parameters from in-situ radiosoundings and using radiative 75 

transfer is a common approach in remote sensing and atmospheric science. These atmos- 76 

pheric parameters are essential for correcting remote sensing data, particularly for esti- 77 

mating Land surface temperature accurately. 78 

The atmospheric parameters are acquired through in situ radiosoundings and the 79 

utilization of radiative transfer codes, such as MODTRAN [41]. Equation (1) has the po- 80 

tential to calculate Ts by inverting Planck's law. The inversion of Equation (1) can be 81 

achieved by correcting for atmospheric and emissivity effects. 82 

Therefore, Inverting Planck's law involves: 83 
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where, λ is the effective band wavelength and Planck's law constants : C1 = 14387.7 84 

μm.K and C2 = 1.19104*108 W.μm4.m-2.sr-1. 85 

The atmospheric parameters were derived from the Operational Vertical Sounder 86 

(TOVS) Thermodynamic Initial Guess Retrieval (TIGR3) database [42] and simulated us- 87 

ing the MODTRAN model. 88 

3.1. Split-Window Algorithm for Land Surface Temperature estimation. 89 

The SW algorithm is a widely used method for estimating land surface temperature 90 

(LST) on remote sensing data in the thermal infrared region and depends on the differen- 91 

tial absorption characteristics of two thermal infrared channels.  92 

The SW algorithm applies quadratic combination of brightness temperatures to cal- 93 

culate LST [42]. It estimates LST by exploiting the distinct atmospheric absorptions in two 94 

adjacent thermal infrared spectral regions, assuming known emissivity. SW algorithm co- 95 

efficients are sensitive affected by changing total column water vapor (WVC) and various 96 

viewing angles [25], [27], [43]. 97 

The SW algorithm has been widely used by researchers to retrieve both sea surface 98 

temperature (SST) and land surface temperature (LST) from remote sensing data. In this 99 

paper, the two-channel algorithm proposed by [39] has been used, which takes into ac- 100 

count the emissivity and water vapor effects.  101 

The formula of the SW algorithm is as follows: 102 

In this formula, Ts represents the surface temperature (in Kelvin), Ti and Tj are the 103 

brightness temperatures from different thermal channels (in Kelvin), ε is the mean effec- 104 

tive emissivity, Δε is the emissivity difference, w is the total atmospheric water vapor (in 105 

grams per square centimeter), and c0 to c6 denote the SW coefficients. 106 

4. MODTRAN for Simulating Atmospheric Parameters. 107 

The atmospherics parameters determination is through simulations that account for 108 

local atmospheric conditions, particularly water vapor content. These simulations estab- 109 

lish the relationship between atmospheric transmittance and water vapor content and are 110 

conducted using atmospheric modeling software like MODTRAN (MODerate spectral 111 

resolution atmospheric TRANsmission). MODTRAN is widely employed in the fields of 112 

remote sensing and atmospheric research to calculate anticipated brightness temperatures 113 

for specific thermal channels on JPSS-1/NOAA-20 and JPSS-2/NOAA-21 satellites. MOD- 114 

TRAN serves as a well-established tool for modeling the radiative transfer of electromag- 115 

netic radiation through Earth's atmosphere. 116 

Temperature profiles were meticulously derived from radiosoundings, originating 117 

from the Television InfraRed Observation Satellite (TIROS) Operational Vertical Sounder 118 

(TOVS) Thermodynamic Initial Guess Retrieval (TIGR3) database [42]. These calculations 119 

spanned a wide spectrum of temperature gradients. 120 

Furthermore, the calculations encompassed various viewing angles, a comprehen- 121 

sive range of atmospheric water vapor values, and 100 distinct emissivity values obtained 122 

( ) ( ) ( )( ) ( )ΔεWccε1WcccTTcTTcTT 65430
2

ji2ji1is ++−+++−+−+=  (3) 
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from spectral responses of diverse surface types available in the Advanced Spaceborne 123 

Thermal Emission Reflection Radiometer (ASTER) spectral library [44]. 124 

The MODTRAN outputs provide essential atmospheric parameter values: atmos- 125 

pheric transmittances, atmospheric upwelling and downwelling radiances. These values 126 

are acquired through mathematical convolution employing two filter functions that cor- 127 

respond to the thermal infrared channels of the JPSS-1/NOAA-20 and JPSS-2/NOAA-21 128 

satellites. 129 

5. Numerical Coefficients and Sensitivity Analysis 130 

The SW algorithm coefficients refer to the parameters used in the SW algorithm for 131 

estimating LST from TIR remote sensing satellite. These coefficients are crucial for the 132 

algorithm as they are used in the mathematical equations to convert the observed radiance 133 

values into LST values. 134 

The coefficients in Equation 1 were calculated through the minimization of simula- 135 

tions from a constructed database for the JPSS-1/NOAA-20 and JPSS-2/NOAA-21 satel- 136 

lites. 137 

To assess the influence of individual error sources on the SW algorithm, a sensitivity 138 

analysis was conducted. This analysis aimed to evaluate the algorithm's performance 139 

across a range of meteorological conditions and land cover types: 140 

              

2
W

2
ε

2
NEΔE

2
algsTotal δδδδ)(Tδ +++=

                   
 (4) 

the total error in LST calculated from elementary errors: the algorithm standard de- 141 

viation, the impact of uncertainties in at-sensor temperatures, land surface emissivity, and 142 

atmospheric water vapor. 143 

6. Analysis of split-window algorithm coefficients and sensitivity results. 144 

Sensitivity analysis, which includes factors such as land surface emissivity, channel 145 

noise, water vapor, is a crucial element in the assessment of the performance and precision 146 

of LST retrieval algorithms. 147 

The SW coefficients present in Table 1 were obtained from regressions methods for 148 

the JPSS-1/NOAA-20 and JPSS-2/NOAA-21 satellites.  149 

Table 1. JPSS-1/NOAA-20 and JPSS-2/NOAA-21 Satellites: Split-Window Algorithm Coefficients. 150 

Satellites C0 C1 C2 C3 C4 C5 C6 

NOAA-11 0.021 1.878 0.268 57.2 0.07 -132 10.31 

NOAA-12 0.030 1.623 0.306 57.1 -0.08 -135 12.12 

JPSS-1/NOAA-20  -0.16 1.330  0.230  58.1  -0.57  -112 8.84  

JPSS-2/NOAA-21 0.079 1.297 0.216 58.6 -0.62 -99 5.88 

Table 2 illustrates the impact of minimization errors for JPSS-1/NOAA-20 and JPSS- 151 

2/NOAA-21 in Kelvin (K). The respective values are 1.09 K and 1.07 K, with corresponding 152 

correlation coefficients (R) of 0.91 and 0.93. Additionally, there are noise-induced errors 153 

of 0.23 K and 0.22 K, as well as errors attributed to atmospheric water vapor content un- 154 

certainty, which amount to 0.04 K and 0.02 K. 155 

When accounting for a 1% uncertainty in surface emissivity, the LST total error is 1.75 156 

K and 1.67 K for JPSS-1/NOAA-20 and JPSS-2/NOAA-21, respectively. If the surface emis- 157 

sivity uncertainty is reduced to 0.05%, the total error becomes 1.30 K and 1.26 K for the 158 

two respective satellites. 159 

Table 2. The sensitivity analysis of impacting factors for JPSS-1/NOAA-20 and JPSS-2/NOAA-21. 160 

 161 
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Satellite 
R alg NE∆T ε ε W Total(Ts) Total(Ts) 

 (K) (K) (1%) (0.5%) (K) (1%) (0.5%) 

NOAA-11 0.96 1.04 0.29 1.57 0.79 0.03 1.91 1.34 

NOAA-12 0.94 1.06 0.28 1.56 0.78 0.06 1.91 1.35 

JPSS-1/NOAA-20  0.91 1.09  0.23  1.35  0.67  0.04  1.75  1.30  

JPSS-2/NOAA-21 0.93 1.07 0.22 1.26 0.63 0.02 1.67 1.26 

7. Split-Window algorithms Validation. 162 

Validation methods are essential for assessing whether Land Surface Temperature 163 

(LST) data conforms to specified standards or accuracy requirements. Ground-based val- 164 

idation is a common approach that involves comparing remote sensing-derived LST val- 165 

ues with measurements collected on the ground. This method has been widely employed 166 

to validate LST products. 167 

Sensitivity analysis serves to evaluate the impact of potential errors the SW algorithm 168 

retrieval. Additionally, validation is imperative to discover the algorithm's alignment 169 

with real-world LST values. In this study, two distinct validation methods were em- 170 

ployed: standard atmospheric simulations and ground truth datasets supplied by [45]. 171 

Table 3. Geolocation and surface type of the two sites. 172 

Site location  Altitude    Longitude Surface type 

Walpeup, northwest of Melbourne  35°12'S     142°36'E Cropland 

Hay, new south Wales  23°24'S     145°18'E 
Vegetation / soil 

mixture 

Two homogeneous surface sites located in Australia were used for LST validation; 173 

their geolocation and surface type are presented in Table 3. The mean emissivity was 174 

given by Prata in [45] of 0.98 for both sites. 175 

The AD592 solid-state temperature transducers were employed to perform in situ 176 

temperature measurements at both sites. Detailed information about the functioning of 177 

these devices is provided by [46]. 178 

Table 4 presents the validation for NOAA algorithm series in comparison to the 179 

ground truth dataset. The last column of the table provides the RMSE values for the algo- 180 

rithms when applied to the total data acquired at sites, Hay and Walpeup.  181 

Table 4. SW algorithms Validation using ground truth datasets. 182 

Sensor 
Mean differences 

(bias) (K) 

Standard deviation  

     of differences (K) 

Root Mean Square 

Error (K) 

NOAA-11 0,74 1,37 1,87 

NOAA-12 0,77 1,33 1,77 

JPSS-1/NOAA-20 1,10 1,43 2.05 

JPSS-1/NOAA-21 0.97 1.31 1.71 

The results demonstrate the successful derivation of LST NOAA series by these algo- 183 

rithms, characterized by mean difference values of 1.10 K for JPSS-1/NOAA-20 and 0.97 K 184 

for JPSS-2/NOAA-21, respectively. Additionally, these algorithms yield LST data with a 185 

standard deviation of approximately 2.05 K for JPSS-1/NOAA-20 and less than 1.71 K for 186 

JPSS-2/NOAA-21 at both the Hay and Walpeup sites. 187 

The analysis results demonstrate the SW capability to generate LST RMSE values 188 

ranging between 1.61 K and 1.96 K for the Hay and Walpeup locations (NOAA11 dataset) 189 

and between 1.71 K and 2.05 K for the Hay and Walpeup locations (NOAA12 dataset). 190 

Furthermore, Figure 1 shows a good matching between the NOAA-20 and NOAA-21 re- 191 

trieved LSTs and the measured ones with a correlation coefficient of 0.98.  192 
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Figure 1. Validation of NOAA-21 and NOAA-20 split window algorithm using the ground truth 194 
data set of [45]. 195 

The satisfactory performance of the JPSS algorithms during the validation process, 196 

utilizing datasets, underscores the algorithm's capability to deliver precise Land Surface 197 

Temperature (LST) estimations under well-defined atmospherics transmittances, grounds 198 

emissivity, and atmospherics waters vapors conditions. The accuracy of algorithms, es- 199 

tablishes this as a favorable choice for applications involving the retrieval of LST from 200 

VIIRS sattelites data. 201 

8. Conclusion 202 

The JPSS-1/NOAA-20 and The JPSS-1/NOAA-21 algorithms are used to retrieve LST 203 

in this study. The algorithms coefficients were obtained from the atmospheric profiles da- 204 

taset simulation. The ground data was used to evaluate the algorithms. 205 

The validation and comparison using the ground truth data sets from two Australian 206 

sites, confirm JPSS algorithms performances. Basing to the RMSE of the retrieved LSTs 207 

from the measured data, the algorithms are very powerful in its LST calculation. The ac- 208 

curacy of LST retrieval is compared to that NOAA-11 and 12. The algorithms have a 209 

higher accuracy with the ground truth data set for NOAA-11 and 12 with precise in situ 210 

atmospheric water vapor contents. The Sensitivity analysis validation, shows the accuracy 211 

with 1.4 K in LST retrieval for the JPSS-1/NOAA-20 and The JPSS-1/NOAA-21 algorithms. 212 

The accuracy of these algorithms is about 1.71 K and 2.05 for the ground truth dataset. 213 
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