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Abstract: Objectives: We have previously shown that inhibition of the mTORC1 nutrient-sensing 

complex by rapamycin and mTORC1/mTORC2 Inhibition by either Torin-2 or RapaLink-1 have dif-

ferential effects on the global untargeted metabolomics in vivo and in vitro cell culture models. 

Methods: In this study, we leveraged the mummichog Python algorithm to analyze the high-dimen-

sion untargeted metabolomics data to model the biochemical pathways and metabolic networks and 

predict their functional activity. We used pancreatic beta-cell culture (Beta TC6) and incubated the 

cells with either Rapalink-1, Rapamycin or the vehicle control for 24 hours. Cells were harvested 

and flush-frozen in liquid nitrogen. Cells were extracted in ethanol, and the supernatant was 

collected. The untargeted metabolomics was performed using the high-resolution mass 

spectrometry LC-MS/MS HILIC peak detection of ESI positive and negative polarity modes. The 

data were collected using Bruker's maXis-II ESI-Q-q-TOF coupled to Dionex Ultimate-3000 

U(H)PLC system using Sequant ZIC-HILIC 150x2.1 mm column (Bruker, Hamburg, Germany). We 

compared the high-resolution untargeted precision metabolomics (LC-MS/MS) between groups us-

ing positive and negative polarity modes to capture both hydrophilic and hydrophobic metabolites. 

We employed the XCMS plus bioinformatics platform to link mTOR-regulated metabolites to the 

predicted biological pathways. Statistical significance (p< 0.001) was assessed by ANOVA and 

Ranked order data by Whitney-Cox followed by ad-hoc unpaired t-test. Results: The cluster 

heatmap deconvolution and cloud plots analysis show the differential pattern of metabolites be-

tween Rapamycin and Rapalink-treated pancreatic beta cell lines. Mapping the downstream metab-

olites data onto predictive metabolic pathways and activity networks revealed that the top path-

ways affected included the pentose phosphate pathway, dopamine and ubiquinol degradation 

pathways in the ESI positive polarity mode, and creatine synthesis/glycine degradation and nicotine 

degradation pathways in the ESI negative polarity mode. Conclusions: The high-resolution untar-

geted metabolomics can be leveraged as a proxy of the internal exposome yielding high-dimen-

sional data that provide mechanistic insights into metabolic and signaling pathways and the under-

lying biology. This approach will have beneficial applications of the internal exposome in determin-

ing the optimal precision nutrition pathways for personalized medicine. 
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Background 

Precision nutrition entails nutrition approaches tailored to the individual metabolic 

profile, biological and physiological attributes, social influences, personal circumstances, 

and environmental exposures. Achieving such a goal requires system science approaches 
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and an understanding of the mechanistic signaling pathways and networks governing 

nutrient metabolism. One of the central regulators of metabolic pathways is the mecha-

nistic Target of the Rapamycin (mTOR) protein, which functions as a critical node to reg-

ulate carbohydrate, fat, and protein metabolism (synthesis and catabolism). mTOR kinase 

assembles two functionally distinct and mutually exclusive complexes termed mTORC1 

and mTORC2 [1, 2]. The Raptor subunit binds the mTOR kinase to form mTORC1—which 

is activated by Rheb at the lysosomal membrane—to regulate cell metabolism in response 

to nutrients and growth factors. On the other hand, Rictor facilitates the mTORC2 locali-

zation to the plasma membrane, together with mLST8, to scaffold the mSin1 subunit to 

control glucose homeostasis and cell growth.  

 In this study, we chemically knocked down mTOR complexes with drugs, including 

Rapamycin (which mainly inhibits mTORC1) and RapaLink-1 (which inhibits both 

mTORC1 and mTORC2) to determine the differences between mTORC1 and mTORC2 in 

their signaling cascade to gain mechanistic insights into the metabolic pathways that gov-

ern nutrient metabolism. We applied the high-dimension untargeted metabolomics as a 

proxy of the internal exposome, the totality of exposures across the lifespan, to provide a 

readout of the differential mechanistic pathways between mTORC1 and mTORC2. Untar-

geted metabolomics systematically identifies small molecule metabolites that are affected 

by the exposome and manifested by biochemical responses and molecular alterations. 

Objectives 

We have previously shown that inhibition of the mTORC1 nutrient-sensing complex 

by Rapamycin and mTORC1/mTORC2 Inhibition by either Torin-2 or RapaLink-1 have 

differential effects on the global untargeted metabolomics in vitro cell culture models [3]. 

In this proof-of-concept study, we leveraged the mummichog Python algorithm to ana-

lyze the high-dimension untargeted metabolomics data for modeling the biochemical 

pathways and metabolic networks and predicting their functional activity using the 

XCMS Plus bioinformatics platform [4, 5].  

Methods 

We used pancreatic beta-cell culture (Beta TC6), which secretes insulin in response to 

glucose, and incubated the cells with either 1) Rapalink-1, 2) Rapamycin or 3) control for 

24 hours. Cells were harvested and flush-frozen in liquid nitrogen. Cells were extracted in 

ethanol, and the supernatant was collected to be analyzed by a high-resolution mass-

spectrometry-based approach (ESI-LC-MS/MS). Both positive and negative ionization 

modes in ESI-LC-MS/MS were used for untargeted screening and differential analysis of 

metabolites under various treatment conditions. The data were collected employing 

Bruker's maXis-II ESI-Q-q-TOF coupled to Dionex Ultimate-3000 U(H)PLC system using 

Sequant ZIC-HILIC 150x2.1 mm column (Bruker, Hamburg, Germany). Using the 

mummichog Python algorithm, we employed the XCMS plus bioinformatics platform to 

link mTOR-regulated metabolites to the predicted biological pathways [4-6]. Metabolites 

were identified by searching the BioCys database. A multi-group analysis by ANOVA was 

performed to compare and determine the significant differences between RapaLink-1, 

Rapamycin, and the control groups. If a statistical significance was determined by 

ANOVA, we performed a protected pair-wise analysis of samples incubated with either 

Ramamycin or RapaLink. Statistical significance (p< 0.001) was assessed by ranked order 

data by Whitney-Cox followed by ad-hoc unpaired t-test.  

Results 

The principal component analysis (PCA) revealed that each group clustered into at 

least two components with distinct metabolite signatures (Figure 1A, Figure 2 C & D). The 

cluster heatmap deconvolution (Figure 1B) and cloud plots (Figure 2 A & B) analysis show 

the differential pattern of metabolites between Rapamycin and RapaLink-treated 
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pancreatic beta cell lines. In the cloud plots (Figure 2 A & B), the features in green color 

showed increased metabolites and features in red revealed decreased metabolites in the 

positive (55 features p<0.001) and negative modes of ionization (344 features p<0.01). Path-

way and network analyses showed that mTOR-centered pathways and networks were 

differentially altered with RapaLink versus Rapamycin. The metabolic pathways and ac-

tivity network analysis revealed that the top pathways affected included the pentose phos-

phate pathway, dopamine and ubiquinol degradation pathways in the ESI positive polar-

ity mode of sample ionization (Table 1), and creatine synthesis/glycine degradation and 

nicotine degradation pathways in the ESI negative polarity mode (Table 2). 

 

Figure 1. Principal Component Analysis (PCA) and Heatmap visualization tools to compare the 

treatment groups. Pancreatic beta cell lines (β-TC-6). were incubated with either RapaLink, Rapamy-

cin, or control for 24 hours. Cells were harvested, flush-frozen, extracted and analyzed using an ESI-

LC-MS/MS spectrometry-based approach. The data was collected and analyzed using the XCMS-

Plus bioinformatics platform. A) Principal Component Analysis (PCA) clusters of the treatment 

groups. B). Heatmap visualization of the comparison of the untargeted metabolomics data. 
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Figure 2. Visualization of data by cloud plot, PCA cluster, and heatmap of the differences of the 

untargeted metabolomics between the effects of mTORC1 inhibitor (Rapamycin) and 

mTORC1/mTORC2 inhibitor (RapaLink-1) on pancreatic cell lines (β-TC-6).in the ESI positive and 

negative modes. Cells were incubated with either Rapalink, Rapamycin or control Cells were har-

vested and analyzed by ESI-LC-MS/MS, followed by bioinformatics analysis using the XCMS-Plus 

platform. A) Cloud plot of the comparison between RapaLink and Rapa incubation, showing (A) 55 

features in the ESI positive mode, (B) 344 features with a p-value < 0.001, and fold change > 1.5. (C) 

Principal Component Analysis (PCA) between RapaLink and Rapamycin in ESI positive Mode and 

(D) ESI negative mode, respectively. (E) Heatmap of all the features in the global untargeted metab-

olomics dataset comparison between RapaLink versus Rapamycin-treated pancreatic beta cells (β-

TC-6). 

Table 1. Dysregulated Metabolic Pathways comparison between the effects of mTORC1 inhibitor 

(Rapamycin) and mTORC1/mTORC2 inhibitor (RapaLink-1) in ESI positive mode. 

Top pathways 

 

Pathways Overlap_Size Pathway_Size p-value (raw) p-value 

Pentose phosphate pathway 

(non-oxidative branch 
2 3 0.023334 0.0 

Dopamine degradation 2 7 0.12893 4e-05 

Ubiquinol-8-biosynthesis 

(eukaryotic) 
2 11 0.2682 0.00074 

Arsenate detoxification I 

(glutaredoxin) 
1 4 0.32129 1 
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Table 2. Dysregulated Metabolic Pathways comparison between the effects of mTORC1 inhibitor 

(Rapamycin) and mTORC1/mTORC2 inhibitor (RapaLink-1) in ESI negative mode. 

Top Pathways 

 

Pathways Overlap_size Pathway_size p-value (raw) p-value 

Nicotine degradation II 4 10 0.0587 0.00289 

Phospholipases 2 2 0.02513 0.0053 

Glycine degradation (creatine 

biosynthesis) 
3 7 0.08438 0.0058 

Creatine biosynthesis 3 8 0.11986 0.00875 

D-myo-inositol (3,4,5,6)- 

tetrakisphosphate biosynthesis 
2 3 0.06755 0.01111 

D-myo-inositol (1,3,4)- 

trisphosphate biosynthesis 
2 3 0.06755 0.0111 

Glutathione biosynthesis 2 3 0.06755 0.0111 

1D-myo-inositol 

hexakisphosphate biosynthesis II 

(mammalian) 

2 4 0.12123 0.02083 

L-dopachrome biosynthesis 2 4 0.12123 0.02083 

tRNA charging pathway 3 12 0.29586 0.03833 

 

Conclusions 

The high-resolution untargeted metabolomics can be leveraged as a proxy of the in-

ternal exposome to determine altered metabolites, yielding high-dimensional data that 

provide plausible mechanistic insights into metabolic and signaling pathways and the un-

derlying biology. This approach will have beneficial applications of the internal exposome 

in determining the optimal precision nutrition pathways for personalized medicine. 
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