Structural Equation Modeling & Artificial Intelligence-based Perceived Motorcycle Risk Prediction in Bangladesh's Urban Driving Environment

Md. Mushtaque Tahmid¹, Gausul Azam Noman¹, Akib Mahmud¹

¹ Equal Contributors

¹ Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET)

sayeemss21@gmail.com;nomanazambd@gmail.com;akibmahmud123456@gmail.com

According to data from the BUET Accident Research Institute (ARI), in 2022, motorbikes accounted for 62% of all vehicles on the road, with 26 accidents occurring for every 10,000 motorcycles making up the majority of all traffic accidents in Bangladesh. This is due to their accessibility, affordability, and ride-sharing use. Hence, it is essential to investigate the risk factors that contribute to motorcycle accidents, how they affect risk assessment, and how to develop the necessary policy implications.

Data on perceived risk was gathered for this study from 1,559 participants in offline and online questionnaire survey. Demographic data together with ratings on the perceived risk of 37 precursors to motorcycling accidents in the setting of Dhaka were gathered. Then ten combined attributes were identified from all precursors. With a 73% prediction accuracy, the Random Forest algorithm has been utilized to predict perceived risk. Moreover, contribution of different precursors on safety status have been demonstrated by structural equation modelling. Lastly, different contour maps for features' correlation, heat map, deployment of result using flask in public server for user interface(which allows model accessible to a wider audience & receive predictions), policy implications have been analysed in this study. In conclusion, any developing country's urban context will benefit greatly from the provided prediction tools for accident analysis and prevention.

Objective

- Finding out the major precursors' comparative analysis and building up a representative & trustworthy model which can be implemented in planning and management later for the curtailment of the accident rates utilizing significant public opinion.
- Implications of output in Road safety policy and practice.
- Implementation of Deployed machine learning model's user interface in public server to predict perceived risk rating of different corridors, regions of Bangladesh.

Sample Question of Forms

hinking about impact of **sharing same roadway with other ro**a users of different vehicles on motorbike accident means non lane based

heterogenous traffic movement [মোটরবাইক দুর্ঘটনায় **অন্যান্য যান ব্যবহারকারীদের সাথে একই লেন ভাগাভাগি** করার প্রভাব সম্পর্কে :]

Latent Variable	Observed Variable	Coeff.	p value	Latent Variable	Observed Variable	Coeff.	p value
DrivingBehaviour	CompetitiveRiding	0.84	0.000	DrivingEnvironment	OnstreetParkingBusStop	0.63	0.000
	Overtaking	0.77	0.000		SideroadEntry	0.62	0.000
	Overspeed	0.76	0.000		CutinMovement	0.62	0.000
	TrafficLawDisregard	0.67	0.000		CutoutMovement	0.59	0.000
	MobilePhone	0.62	0.000		SignMark	0.57	0.000
	Overconfidence	0.618	0.000		HeterogenousTraffic	0.57	0.000
	Inexperience	0.57	0.000		DividerMedianGuardrail	0.52	0.000
	Overloading	0.55	0.000		RightturnMerge	0.52	0.000
	DrugAddiction	0.51	0.000		Curve	0.50	0.000
	PanicBraking	0.45	0.000		LawEnforcementLack	0.50	0.000
	MechProblem	0.35	0.000		FlyoverbridgeCulvert	0.48	0.000
Weather	FogDust	-0.76	0.000		TwowayTraffic	0.40	0.000
	Rainyweather	-0.72	0.000	Pedestrian	LevelCrossing	0.60	0.000
	Hightemp	-0.41	0.000		Ped.ActivityFootpath	0.58	0.000
GeneralRisk	IntersectionProblem	0.68	0.000		ProblematicCurb	0.53	0.000
	DistressDrainage	0.66	0.000		PedestrianCrossing	0.51	0.000
	Lighting	0.64	0.000		SameDir.Pedestrian	0.42	0.000
	TravelDistance	0.08	0.004		ReverseDir.Pedestrian	0.29	0.000
	MoreCcBike	0.01	0.652				
Observed Variable	Latent Variable	Coeff.	p value	Observed Variable	Latent Variable	Coeff.	p value
AccidentExperience	GeneralRisk	0.14	0.022	PerceivedRisk	DrivingEnvironment	0.39	0.000
	DrivingEnvironment	0.13	0.013		DrivingBehaviour	0.20	0.000
	Pedestrian	-0.12	0.042		GeneralRisk	-0.17	0.002
	DrivingBehaviour	-0.06	0.069		Pedestrian	-0.15	0.006
	Weather	0.04	0.278		Weather	0.00	0.662

Machine Learning	Ма
Process wodel	Pre
Data input	Plea 1. Str
+	3. Ne
Data process by combining attributes	4. Ag 5. Sti
	biker
Dete tusising husen deux	moto
forest model	weat
•	Drivi
Accuracy: 0.73	pave
	sign,
•	traffi
Deployment of our machine	traffi
learning model in public server using Flask	pede

achine Learning Deployment

ediction

Please give us rating between 1 to 5					
1. Strongly Disagree 2. Disagree 3. Neutral					
4. Agree					
5. Strongly agree					
biker's driving behaviour					
motorbike condition					
weather environment					
Driving environment					
pavement condition					
sign,marking & lighting of road					
traffic control					
traffic movement					
pedestrian activity					

06

09

10

11

Accident Experience (number) Perceived Risk (rating)

Weather environment Rainyweather (rain, storm, flooding) FogDust Beneficial Hightemp

Pavement Distress Drainage (crack, cut, failure) Level Crossing (pedestrian, pavement)

Driving environment Problematic Curb Curve (turn, bend) Flyover bridge Culvert Divider Median Guardrail

Pedestrian activity Pedestrian Activity Footpath Pedestrian Crossing Same Direction Pedestrian Reverse Direction Pedestrian

Traffic movement Side road Entry Cut in/out Movement Right Turn Merge Movement Manual Two-way Traffic

Traffic control & Law Intersection Problem (signal, device, police) Meterogenous Traffic (no lane) Onstreet Parking Bus Stop Law Enforcement (drug, speed, license, training)

Research Outcome & Implications

- In the first work on perceived risk of motorbike accident & it can be used for future research to assess the perceived safety of other cities in developing countries.
- Pedestrian, weather related features are not significant as actors of accident hotspots and perceived risk. General risk and driving environment factors are more dominant actors in hotspots whereas driving environment and driving behavior are more dominant imposing threats for perceived safety.
- Presenting the attributes affecting Accident Experience & Perceived Risk and to examine the structural relationships among these attributes.
- Ranking of attributes on the basis coefficient loading from SEM analysis.
- Different models can be prepared with different sample size of different locations, usage criteria, occupation etc.
- From contour map, Traffic control attribute is more dominant over pedestrian activity which tells pedestrian activity creates less impact on perceived safety.
- Bikers driving behavior also creates more impact on perceived safety than traffic movement.
- Pavement condition & traffic movement, traffic control & traffic movement create almost similar contribution on perceived safety.
- Correlations between attributes from heatmap.
- By collection of more specific data in model's Data Frame on respective region, user & planner can get risk level after introducing rating on the server website.

