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Abstract: In order to plan and manage low-carbon investments in wide real estate assets, a strategic 

approach is developed in this research to act on building stocks as a whole, with the aim of over-

coming the single-building perspective and identify the energy retrofit level leading to the maxi-

mum possible benefit. It is shown how artificial intelligence (AI) and optimisation computing are 

here essential for the creation of the decision-making process. In fact, energy improvement consists 

in an optimisation problem in which conflicting objectives and constraints are balanced, and several 

techniques are integrated to achieve a unified result, including machine learning, economics, build-

ing energy simulation, computer programming, optimisation, and risk analysis. This target is 

achieved by means of Artificial Neural Networks (ANNs) for energy consumption assessment, an 

Analytic Hierarchy Process for energy retrofit compatibility assessment, and an evolutionary opti-

mization algorithm for the achievement of the optimal configuration of intervention on the stock, 

maximizing the energy and economic performance of the investment. The proposed procedure is 

validated on the case study of a building asset located in Northern Italy. Since the model developed 

relies on AI-based algorithms it has a consequent limitation: the developed ANNs can work only 

for the building types, occupation profiles and climatic areas that were used in the training phase. 

In further development of this research the aim will be to expand the generalisation properties of 

the forecasting tool. 
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1. Introduction 

The present research discusses the integration of artificial intelligence (AI) and op-

timisation computing to sustain energy retrofit investments in complex real estate assets.  

It is well known that, during the last years, the efforts dedicated to achieving energy 

sustainability in the building sector have exponentially increased, promoting deep retrofit 

cycles, district approaches [1] and cost optimal strategies [2]. A focussed analysis of the 

state-of-the-art highlighted that research and practice struggle in acting on building port-

folios as a whole, preferring to conduct tailored studies of one building at-a-time due to 

the huge complexity of the process and the high level of the reliability of the forecasts 

required [3]. This, however, leads to losing the optimized and strategic benefits that could 

be generated by a unified programming, targeted to reach the maximum possible benefit. 

The single-building perspective should be overtaken, and new methodologies should be 

able to handle built assets as a whole in order to implement energy retrofit programs to 

obtain the maximum benefits in a domain of economic and technical constraints [4–7]. In 

this direction, artificial intelligence, machine learning and computing algorithms can be 
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extremely useful for mass appraisal energy assessments [8–10], building energy retrofit 

designs [11], decisional criteria [12], optimization processes [13,14] and decision making 

procedures [15–18]. Artificial Neural Networks (ANNs) have been successfully employed 

in this research field, obtaining very accurate results [15]. 

2. Materials and methods 

This paper employs an AI-driven approach to optimize the definition of building 

energy retrofitting at a district scale. The scope of going beyond the single-building per-

spective is to identify the set of energy retrofit actions that can bring the highest possible 

benefit in terms of economic, environmental, and architectural targets [19]. For this pur-

pose, it is needed to collect a huge amount of data of buildings energy profiles, produce 

an energy demand AI-based simulation tool, suggest and test several energy retrofit in-

terventions, assess the associated retrofit costs and the respective energy savings, define 

the domini of feasibility of the analysis, perform iterative project simulations on the given 

building asset in tandem with an optimization tool, identify the most convenient energy 

retrofit configuration for each building of the given asset. Specifically, the AI-based pro-

cedure applied in this paper can be split into the following phases: 

• The first problem the research faces is the assessment of energy-uses and energy-

efficiency potentials for a building asset counting a plethora of premises, which ends 

up being a problem of mass-appraisal [20] and screening evaluation [21]. To address 

this first issue, 100,000 parametric simulations are run in Energy Plus, and validated 

on real case studies. Such simulations associate the varying building’s characteristics 

(envelope, installations, dimension, etc.) to the corresponding primary energy con-

sumption. As illustrated in Figure 1, this allows the planner to have the availability 

of a detailed database to train a set of ANNs to forecast the building energy con-

sumption as a function of the building’s features. In particular, the ANNs produced 

calculate the yearly primary energy demand for heating, cooling, hot water, and elec-

tricity in residential buildings, depending on building size, envelope properties and 

several energy plants parameters. 

 

Figure 1. From building energy simulations to Neural Networks development. 

• The second phase of the research is dedicated to the definition of different energy 

retrofit options that can be differently implemented on the built asset [11]. Among 

them, are considered the installation of thermostatic valves, mechanical ventilation, 

heat recovery systems, condensing boiler, low-emission windows, high-efficiency il-

lumination systems, internal/external wall/roof insulation. In particular, every possi-

ble combination of the retrofit options on the buildings of the stock represents an 

alternative scenario of intervention. 

• In order to understand which could be the best retrofit scenario to be implemented 

on every building of a stock, three performance indexes are introduced [12],. The 

three indexes measure the impact produced in terms of energy, monetary and archi-

tectural aspects. The energy savings (ES) are assessed using the neural networks, 
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comparing the energy consumption before and after the retrofit. The net monetary 

savings (NS) are estimated based on a Life Cycle Costing approach. The architectural 

compatibility of the retrofit measure on the building is assessed by means of an An-

alytic Hierarchy Process (AHP), presented in Figure 2, developed by interviewing a 

commission of ten experts in the fields of energy retrofit, architecture, restoration, 

technology, and economics. The AHP allows to quantify the architectural compati-

bility of the interventions through the assessment of a restoration score (RS).  

 

 

Figure 2. AHP structure. 

• After the three decisional indexes ES; NS; RS are established, an evolutionary algo-

rithm is launched to test out the overall benefits produced by every scenario if ap-

plied to the buildings of a stock and select the best scenario. As in Figure 3, the algo-

rithm iteratively calculates the indexes for every scenario of intervention inside the 

feasibility domain, as a sum of the benefits/costs for each building. The target is the 

optimal configuration of interventions over the stock, i.e. the one that simultane-

ously maximizes the three indexes, within the declared constraints [13,14]. 

 

 

Figure 3. Optimization process. 

• In the final part of the research, a risk analysis studies how the uncertainty factors 

may impact the results of the chosen configuration of interventions [22].  

The overall methodology is finally resumed in Figure 4. The procedure described 

above is supported by a tailored calculation tool made of the following components: (I) 

Input file construction. (II) Tool for the assessment of yearly energy consumption by 

means of the Artificial Neural Networks, of the costs of investment for the energy retrofit 

intervention, and of the restoration score. Such parameters are iteratively assessed by the 

calculation tool for each building and each retrofit configuration. (III) Optimization pro-

cess aimed at identifying the most convenient combination of energy retrofit scenarios for 

the entire asset of buildings, based on the simultaneous maximization of ES, NS, RS. It 

consists in a single-objective evolutionary algorithm, namely an algorithm where the cost 

function is equal to the sum of normalized ES, NS and RS, for each combination of energy 

retrofit configurations. (IV) A risk analysis tool investigating how uncertainty factors may 
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vary the results of the chosen configuration of interventions, defining the most probable 

outcome, the worst-case scenario, and the optimal case scenario. 

 

 

Figure 4. Complete decisional model. 

3. Results Discussion and Conclusions 

The procedure proposed by the authors was tested in an exemplary case study, to 

test the feasibility of the procedure itself as well as the consistency of the results. For such  

purpose, a building asset placed in Bologna was considered, to verify the reliability of the 

ANNs forecasts, as well as the ES, NS and RS parameters assessments, and the effective-

ness of the optimization algorithm in the identification of the most convenient combina-

tion of energy retrofit configurations. A residential building stock of a total of 34,411 sqm 

was considered, and the primary energy consumption before retrofit was assessed by the 

ANNs to be 1808.55 kWh/sqm. After the implementation of the model, the optimal con-

figuration of intervention led to a total primary energy consumption of 1169.88 kWh/sqm. 

The total investment brought a net benefit 967,140 € € after 20 years.  

In conclusion, the proposed procedure takes advantage of AI in a way that is able to 

automate complex calculations and decision-making processes. In fact: 

• The developed Artificial Neural Networks can calculate the yearly primary energy, 

gas and electricity consumption in about 1/1000th of the time needed by usual build-

ing energy simulation software. 

• The introduction of AHP automates compatibility decisions. 

• The optimization algorithm automatically seeks for the best solution, being able to 

launch and guide the seek for the optimum among millions of available combinations 

of energy retrofit configurations on a large building stock. 

Finally, the Authors recall the purpose of the proposed calculation tool: it is aimed at 

the assessment of the best combination of energy retrofit configurations at a stock level, 

i.e. when available options are too many for manual trial-and-error approach and a guide 

to the most convenient scenario can greatly increase the speed and reliability in the further 

design refinements of the energy retrofit interventions. As such, the main contribution of 

this study is the attempt to fill the lack in the research and practice in the application of a 

methodology for energy retrofit assessment to wide building stocks, thus overcoming the 

single-building perspective. The model shows high flexibility when comparing multiple 

scenarios, thanks to the use of AI integrated tools. This approach can be useful for real 

estate investors and stakeholders, leading to determine the optimal set of interventions on 
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a multiplicity of buildings supported by this decisional model. The methodology pro-

duced allows the planner to pursue multiple targets at once, in agreement with recent EU 

Directives: maximum energy savings, economic savings and compatibility, within a dom-

ino of feasibility constraints like budget availability, technical incompatibilities, timings, 

pre-set energy/monetary minimum benchmarks. 

On the other hand, algorithms, which, like this one, are based on a highly numerical 

procedure might be difficult to check and control. For this purpose, the authors plan to 

assist the user by means of a series of intermediate output diagrams to control the results. 

Moreover, the developed ANNs can be used only for assessing the energy demand of 

residential buildings with occupancy profiles similar to the ones used for the training. 

Therefore, in the next releases, more refined algorithms will be used, in order to imple-

ment additional features and make the tool more flexible for other building typologies.  

The research will be also improved by the Authors by testing it on others building 

stocks and enlarging the domains of building energy simulations, thus increasing the in-

terventions options covered and the building characteristics considered. Moreover, the 

Authors are also working on the collection of a large database of building market values 

in Italy, paying special attention to the energy class of the premises. This database will be 

integrated in the model here developed in order to assess the market value of buildings 

after their energy refurbishment,  
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