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Abstract: This study explores ultrasonic wave propagation in human cancellous bone, treating it as 

a fluid-saturated elastic medium. The interaction between the structure and fluid during ultrasonic 

excitation is described using Johnson's model, modifying Biot's theory. Biot's theory predicts fast 

P1 and slow P2 wave propagation. An analytical transmission coefficient in the frequency domain 

is derived, accounting for system parameters and excitation frequency. The transmitted signal is 

calculated by multiplying the incident signal's spectrum with this coefficient. The study investi-

gates how changing physical and mechanical factors affect the transmission of fast P1 and slow P2 

waves through fluid-saturated human cancellous bone, offering insights for medical diagnostics 

and biomaterial design. 
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1. Introduction 

Osteoporosis, a debilitating medical condition, is characterized by reduced bone 

density, diminished strength, and increased fragility, transforming bone tissue into a 

porous, compressible structure resembling a sponge. This condition heightens the risk of 

fractures, especially in common sites like the spine, hips, ribs, and wrists, due to minor 

trauma. Structural alterations in osteoporotic trabecular bone involve thinning or disap-

pearance of trabeculae, increasing the spacing between them [1]. 

Ultrasonic methods play a vital role in detecting and characterizing osteoporosis. 

Various ultrasound techniques have been developed for trabecular bone assessment, 

measuring speed of sound and assessing attenuation as functions of frequency, corre-

lating with bone density [2,3]. Other approaches involve parameters related to speed of 

sound and longitudinal slow wave propagation within a trabecular bone. Trabecular 

bone, being a non-homogeneous porous medium, complicates the interaction between 

ultrasound and bone [4]. 

Ultrasonic wave propagation complexity in bones arises from factors such as satu-

rating fluid properties [5], solid phase mechanical characteristics [6], anisotropy [7], and 

macroscopic structural parameters like porosity, tortuosity, and viscous characteristic 

length [7,8]. Developing a comprehensive theoretical model, as Biot theory modified by 

Johnson, is crucial to address this complexity [9,10], aiding the solution of the inverse 

problem [4,11-13] and enabling extraction of bone's physical and mechanical properties 

from ultrasonic measurements. 

The main objective of this study is to conduct a numerical simulation investigation 

assessing the sensitivity of key physical parameters, specifically porosity, tortuosity, and 

viscous characteristic lengths, on ultrasonic wave transmission through a hypothetical 
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sample of human cancellous bone. This research endeavors to enhance our understand-

ing of osteoporosis detection and contribute valuable insights for medical diagnostics 

and biomaterial design. 

2. Theoretical model 

A porous medium can be described as a solid material penetrated by an intercon-

nected network of pores filled with fluid. Within this medium, two continuous entities 

coexist: the solid matrix and the network of fluid-filled pores. This combination results in 

a poroelastic medium, characterized by essential properties such as porosity, permeabil-

ity, and the specific characteristics of its components—the solid and fluid matrices. 

Within this medium, incident and reflected longitudinal waves, as well as shear waves, 

can propagate. The sound field within the material can be comprehensively described by 

considering the amplitudes of these waves. 

In our analysis, we focus on a monolayer porous medium (as illustrated in Figure 1) 

comprising a slice of a homogeneous and isotropic porous material characterized by its 

flexible structure with a thickness denoted as L. This medium occupies a finite space de-

fined within the range 𝟎 ≤  𝑥 ≤  𝑳 and is subjected to excitation by a plane acoustic 

wave with a normal incidence. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of the problem at normal incidence. 

The theoretical framework we employ draws from the field of dynamic poroelastic-

ity, originally formulated by Biot [9]. This theory provides a comprehensive and general 

description of the mechanical behavior of such porous media. Biot's equations are de-

rived from linear elasticity equations governing the solid matrix, Navier-Stokes equa-

tions describing the behavior of the viscous fluid, and Darcy's law, which governs fluid 

flow within the porous matrix. The equations of motion for both the solid and fluid 

phases are expressed as follows [9,8,12]: 

𝝆𝟏𝟏
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�⃗⃗�  and �⃗⃗�  represent the displacements of the solid and fluid phases, respectively. 

The parameters 𝝆𝒏𝒎 (with n = 1, 2 and m = 1, 2) are known as "mass coefficients" and are 

linked to the densities of the solid 𝝆𝒔 and fluid 𝝆𝒇 phases through the relationships 

𝝆𝟏𝟏 = (𝟏 − 𝜙)𝝆𝒔 − 𝝆𝟏𝟐, and 𝝆𝟐𝟐 = 𝝋𝝆𝒇 − 𝝆𝟏𝟐 , where ϕ denotes the porosity. The coeffi-

cient 𝝆𝟏𝟐 signifies the mass coupling parameter between the fluid and solid phases and 

consistently assumes a negative value, 𝝆𝟏𝟐 = −𝝆𝒇(𝜶(𝝎) − 𝟏). Here, α(ω) is a function of 

frequency called the dynamic tortuosity [10], which characterizes the viscous interactions 

between the fluid and the solid structure, significantly impacting acoustic wave damping 

in porous materials. At high frequencies, the expression for dynamic tortuosity α(ω) is 

given by [8,10-13]: 

𝜶(𝝎) =  𝜶∞ (𝟏 +
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 In this equation, 𝜶(𝝎) represents the high-frequency limit of the tortuosity, Λ de-

notes the viscous characteristic length, and 𝜹(𝝎) = √𝟐𝜼/𝝎𝝆𝒇 (where η is fluid viscosity 

and ω is angular frequency) corresponds to the viscous skin depth thickness, represent-

ing the region where the velocity distribution of the fluid is perturbed by frictional forces 

at the fluid-frame interface [8,11-13]. 

Parameters P, Q, and R are generalized elastic constants associated with other 

measurable quantities—namely, 𝑲𝒇 (bulk modulus of the pore fluid), 𝑲𝒔 (bulk modu-

lus of the elastic solid), and 𝑲𝒃 (bulk modulus of the porous skeletal frame)—through 

the following relationships [8]: 
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The Young modulus and the Poisson ratio of the solid (𝑬𝒔,𝝂𝒔) and the skeletal frame 

(𝑬𝒃,𝝂𝒃) are dependent on P, Q, and R through the relations: 

𝑲𝒔 =
𝑬𝒔

𝟑(𝟏−𝟐𝝂𝒔)
, 𝑲𝒃 =

𝑬𝒃

𝟑(𝟏−𝟐𝝂𝒃)
𝐞𝐭 𝑵 =

𝑬𝒃

𝟐(𝟏+𝟐𝝂𝒃)
. (5) 

For a cancellous bone occupying the region 0 ≤ x ≤ L (as depicted in Figure 1), the 

general expression of the transmission coefficient T(ω) is provided as follows [8,12]: 

𝓣(𝝎) =
𝟐𝑭𝟑(𝝎)

𝑭𝟑
𝟐(𝝎)−(𝟏−𝑭𝟒(𝝎))𝟐

 (6) 

Detailed expressions for 𝑭𝟑(𝝎), 𝑭𝟒(𝝎) are provided in Ref [8,12]. 

The expression of the transmitted field 𝑷𝐭(𝒙,𝝎)  are identified in terms of the 

transmitted coefficient 𝓣(𝝎) and the incident field 𝑷𝒊(𝒙,𝝎), where they are related in 

frequency domain by the following relation: 

𝑷𝐭(𝒙,𝝎) = 𝓣(𝝎)𝑷𝒊(𝒙,𝝎) (7) 

The time-domain simulated transmitted signal 𝑷𝒔𝒊𝒎
𝐭 (𝒙, 𝒕), is obtained numerically 

by taking the inverse Fourier transform Ƒ−𝟏 of equation (7) as follows: 

𝑷𝒔𝒊𝒎
𝐭 (𝒙, 𝒕) = Ƒ−𝟏(𝓣(𝝎)𝑷𝒊(𝒙,𝝎)) (8) 

 

3. Numerical Simulations 

Numerical simulations of the transmitted waves are conducted by varying the 

physical parameters of a porous material, corresponding to a spongy bone, and described 

acoustically according to the modified Biot theory. 

Consider a hypothetical sample (S) of human cancellous bone with a thickness of L = 

5.0 cm. The characteristics of this sample are presented in Table 1. The simulated incident 

signal is generated using the Matlab Gaussian function with unit amplitude, centered at a 

frequency of 1 MHz (Figure 2). 

Table 1. Physical and mechanical parameters describing the hypothetical trabecular humane bone 

sample. 

Sample  φ α∞ Λ(μm) Es(GPa) Eb(GPa) (𝝂𝒔, 𝝂𝒃) ρs(kg.m-3) 

S 0.87 1.05 90.0 30.0 2.5 0.40 1990 

Fluid 
Ρf (Kg.m-3) Kf (GPa) η (Pas)  

 1000 2.3 0.001 

The transmitted signal, corresponding to the parameters given in Table 1, is depicted 

in Figure 3. This transmitted signal consists of two waves, as predicted by Biot: slow and 

fast waves. In order to investigate the sensitivity of the physical parameters listed in Ta-

ble 1, which influence the transmission coefficient, we assess the impact of each param-

eter on the transmitted waves by applying a variation between ±10% to the physical pa-

rameters. This analysis helps illustrate the effect of each parameter on the transmitted 

signal. 
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Figure 2. The incident signal (left) and its spectrum (right). 

 

Figure 3. Simulated transmitted signal. 

3.1. Influence of Physical Parameters on the Ultrasonic Transmitted Wave 

3.1.1. Effect of Porosity (ϕ) 

The study of the influence of porosity (ϕ) on the transmitted signal is represented in 

Figure 4. The continuous signal in this figure represents the simulated transmitted signal 

obtained using Eq. (8) with the physical and mechanical parameters listed in Table 1. The 

signals represented by the dashed lines are obtained by increasing and decreasing the 

initial value of ϕ by ±10%, while keeping the values of the other parameters constant. 

Notably, the influence of porosity (ϕ) on the transmitted signal is relatively small. 

A decrease in porosity (ϕ) by -10% results in an approximately 1.62% increase in the 

amplitude of the transmitted signal (red dashed line), whereas an increase in porosity (ϕ) 

by +10% leads to an approximately -8.39% decrease in amplitude (blue dashed line). 

Therefore, the influence of porosity (ϕ) on the transmitted waves is modest. 
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Figure 4. The porosity ϕ influence on the transmitted signal. 

3.1.2. Effect of Tortuosity (𝛼∞) 

To study the effect of tortuosity (𝛼∞) on the transmitted wave, the physical and 

mechanical parameters are held constant while varying tortuosity (𝛼∞) by ±10%. Figure 5 

illustrates that a +10% increase in tortuosity (𝛼∞) results in a 28.95% increase in the am-

plitude of the transmitted wave, while a -10% decrease leads to an attenuation of ap-

proximately -8.34% in the amplitude of the transmitted wave. It is evident that the tor-

tuosity (𝛼∞) has a significant impact on the transmitted waves as well as on their propa-

gation speed. 

 

Figure 5. The effect of the tortuosity on transmitted signal. 

3.1.3. Effect of Viscous Characteristic Length (Λ) 

Figure 6 demonstrates the sensitivity of the viscous characteristic length (Λ) on the 

transmitted signal. It is evident from this figure that this parameter exerts a substantial 

influence on the transmitted signal. A variation of ±10% in the viscous characteristic 

length (Λ) results in a decrease of -16.20% and an increase of +22.5% in the amplitude of 

the transmitted wave. Numerical simulations clearly indicate that the viscous character-

istic length (Λ) has a more pronounced influence, similar to tortuosity, on the amplitude 

of the transmitted signal. 
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Figure 6. The influence of the viscous characteristic length 𝚲 on the transmitted signal 

Conclusion 

In this work, the modified Biot model is used to investigate the impact of physical 

and mechanical parameters on transmitted waves within a 1 MHz frequency band. The 

findings demonstrate that even slight variations of ±10% in these parameters have a con-

siderable influence on the fast and slow waves in the transmitted signal. Specifically, the 

viscous characteristic length and tortuosity emerge as key factors shaping wave behavior. 

The study implies that an inversion process utilizing transmitted waves can effectively 

determine these parameters, providing valuable insights for diverse applications in fields 

such as biophysics and material science. 
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