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Abstract: This study assesses ALOS-2/PALSAR-2 (ALOS2) polarimetric images for detecting forest 

volume losses due to selective logging in a region in the Brazilian Amazon. Two logging-intensive 

areas APU 2016 and APU 2017, were studied. ALOS2 imagery atributes, including backscatter and 

phase data, were analyzed for differences between logged and unlogged regions using Wilcoxon's 

nonparametric test at a 95% confidence level. The Radar Normalized Difference Vegetation Index 

proved effective in detecting selective logging-induced forest volume losses, with consistent results 

(p-value 0.003 for APU 2016 and 0.037 for APU 2017). These findings provide insights for monitor-

ing and mitigating ecological impacts from logging in complex forest ecosystems. 
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1. Introduction 

Selective logging consists of removing timber selected trees species and usually takes 

place in limited areas and over short periods [1,2]. This process can lead to a deterioration 

of the canopy density and structure [3], causing a reduction in aerial biomass [4] and pho-

tosynthesis [5]). It can also harm the canopy floristic composition [6] and increase the risk 

of local extinction of native species [7]. 

Increased canopy openness due to selective logging can contribute to enhancing mi-

croclimatic changes which, in turn, influence the proliferation of exotic species [8]. The 

sum of these changes can contribute to increasing the mortality rate of trees [6]. The re-

covery time of areas affected by selective logging is often determined by the pre-pertur-

bation conditions of the biophysical structure and the intensity of the disturbance [9]. 

According to Curtis et al. [10], selective logging stands out as a prominent contribu-

tor to tropical forest degradation. This degradation phenomenon has notably gained mo-

mentum across most tropical forests, driven primarily by the escalating demand for tim-

ber products [11]. Research Barros et al. [12] underscores this trend, specifically in the 

Amazon region. Their findings emphasize the frequent occurrence of selective logging, 

particularly targeting timber species of high commercial value. The upsurge in this activ-

ity can be attributed to the burgeoning domestic timber market and concurrent enhance-

ments in road infrastructure.  
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Selective logging, when executed without adherence to sustainable forest manage-

ment practices, leads to the formation of heterogeneous forest landscape with remnants 

of logging infrastructure, and degraded forests [13]. This type of degradation increases 

the forest's susceptibility to events such as fire and drought [14] and can also be a precur-

sor to deforestation [15]. Consequently, it does not ensure the preservation of the forest 

cover, its structure and diversity, as well as the regional ecology of the forest ecosystem 

[16]. 

Studies on the impacts caused by forest degradation due to selective logging pro-

cesses are of fundamental importance. Monitoring and quantifying biomass losses caused 

by forest degradation due to selective logging, using remote sensing products, is still a 

major challenge, especially since changes in forest cover are very subtle and punctual. In 

this sense, this study focuses on evaluating the capabilities of ALOS-2/PALSAR-2 polari-

metric images for detecting forest volume losses resulting from the selective logging pro-

cess in Tapajós National Forest, situated in the Brazilian Amazon rainforest. 

2. Materials and Methods 

2.1. Study Area 

The study area is composed of two Annual Production Units (APU) – APU 2016 and 

APU 2017, inserted in the Tapajós National Forest (TNF), near the BR-163 highway (Cu-

iabá/Santarém highway), in the Pará state, Brazil.  

Despite the APU are areas with high timber exploration (between 27 m³ ha-1 and 29 

m³ ha-1) [17], the timber management in these areas is carried out sustainably. Together 

the APU 2016 and APU 2017, cover an area of approximately 10.7 km². The main species 

selected for selective logging were: maçaranduba (Manilkara huberi), tauari (Couratari gui-

anensis), jarana (Lecythis lurida), and goiabão (Pouteria bilocularis), with only those with a 

diameter greater than or equal to 50 cm being considered. 

2.2. Field Data 

The sample set consists of selective logging points obtained from the Cooperativa 

Mista da Floresta Nacional do Tapajós (Coomflona). For each sample point, representative 

geographic coordinates (latitude and longitude), using a Global Positioning System (GPS) 

receiver (Garmin 60CSx and 64s models), were gathered. 

A set of 1,127 selective logging samples was obtained for UPA 2016. The selective 

logging period in this area was between December 28, 2016, and January 30, 2017. In turn, 

for UPA 2017, were obtained a set of 1,103 selective logging samples, and the selective 

logging period was between November 11, and December 07, 2017. Further details on the 

acquisition of the field samples can be found in Wiederkehr, 2022 [17]. 

2.3. Control Group 

To create the control group, data from undisturbed and undegraded Tropical Moist 

Forests mapping (TMF) from 1982 to 2020, freely available on the platform of the Euro-

pean Commission's Joint Research Centre, was used as a reference. To compose the con-

trol group, 567 random points were generated in vector format using QGIS v.3.6.10 soft-

ware, with a minimum distance of 100 m, inserted into a total area of around 664 km². 

These points were overlaid on the undisturbed and undegraded tropical rainforests map, 

which were in raster format. From this overlay, it was possible to extract the forest sample 

values for all the random points generated from the map. 

2.4. SAR Images and Processing 

Four dual polarimetric images, HH and HV, in StripMap-3 mode from ALOS-2/PAL-

SAR-2 satellite (ALOS2), L band (~23.6 cm), with 1.1 processing level (Single Look Com-

plex data) were used. The multitemporal ALOS2 images were acquired on 09/18/2016, 

02/05/2017, 11/12/2017, and 05/13/2018. These acquisition dates correspond to the period 
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before and after selective logging exploration. The image pairs used by the field samples 

and control group associated with each APU are listed in Table 1. 

Table 1. ALOS2 image pairs correspond to the period before and after selective extraction in each 

Annual Production Units (APU). 

Image acquisition 

APU Before After Nº samples Period of selective logging 

APU 2016 09/18/2016 02/05/2017 1.127 12/28/2016 – 01/30/2017 

APU 2017 11/12/2017 05/13/2018 1.103 11/20/2017 – 12/07/2017 

The Sentinel Application Platform (SNAP) software was used for the ALOS2 images 

processing. The multilook processing was carried out with a window size of 1 pixel in 

range and 2 pixels in azimuth, which resulted in pixel spacing of 5.13 m in the range di-

rection and 3.22 m in the azimuth direction. The BoxCar filter with a 3x3 pixel window 

was applied to reduce the speckle noise, and afterwards H-α polarimetric decomposition 

was carried out [18], in order to extract the entropy (H), and alpha angle (α-ALOS2) at-

tributes. 

The ALOS2 images were also radiometrically calibrated into backscattering coeffi-

cients (σ°) that allowed generating the Radar Normalized Difference Vegetation Index [19] 

and the grey level co-occurrence matrix - GLCM [20] in HV polarization. The GLCM at-

tributes considered were Contrast (Con), Energy (Ener), and Maximum Probability (Max). 

Images were geometrically corrected using a 30 m digital elevation model derived from 

the Shuttle Radar Topography Mission. The last procedure consisted of the coregistered 

by the neighbour distance method. After carrying out all the procedures in the processing 

step, a final pixel size of 8.24 m was obtained for the georeferenced products derived from 

the ALOS2 images.  

2.5. Forest Volume Loss Detection Procedures 

The pixel-by-pixel detection approach was used to verify the hypothesis of vegeta-

tion volume loss due to degradation by selective logging processes. In this approach, each 

selective logging sample corresponds to a pixel in the ALOS2 images. In this sense, a pixel 

with a spatial resolution of 8.24 m corresponds to a total area of 67.90 m², which is consid-

ered the smallest total area possible to be imaged by the ALOS2/PALSAR2 system. The 

main assumption is a change in the value of each pixel investigated. Before selective log-

ging, the pixel corresponding to unchanged vegetation has a certain value associated with 

it. After selective logging, it is expected that the respective pixel will have another associ-

ated value since trees have been felled and adjacent logging activities have been carried 

out. 

2.6. Evaluation 

To validate the results obtained from the detection of forest volume loss, the non-

parametric Wilcoxon test was applied. The Wilcoxon test has the null hypothesis H0 that 

the two samples follow the same probability distribution and the alternative hypothesis 

H1 that the distributions of the two samples are different. The Wilcoxon test returns a p-

value, which is compared to the significance level of 0.05. 

In this sense, to validate that the differences detected in the forest volume of the field 

samples are significant, at a significance level of 0.05, we expect to reject hypothesis H0 

and accept hypothesis H1. On the other hand, for the control group, we expect to accept 

hypothesis H0 and reject hypothesis H1, since, theoretically, there was no forest disturb-

ance in the control areas, consequently, the samples follow the same probability distribu-

tion. 

3. Results and Discussion 
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3.1. Detecting Forest Volume Losses from the Control Group 

The control sample group was employe to evaluate whether the disparities observed 

in forest volume could be attributed to degradation processes stemming from selective 

logging or possibly random variations. A total of six attributes extracted from the ALOS2 

images were tested.  

The SAR attributes tested (RNDVI, Con, Ener, Max, H, and α-ALOS2), and associated 

with both APUs, 2016 and 2017, in the Wilcoxon test indicated that the distributions of the 

samples observed before and after the hypothetical selective logging event followed the 

same distributions, with p-values ranging from 0.055 to 0.807 (Table 2). This suggests that 

there were no significant differences between the same samples analyzed in different pe-

riods. 

Table 2. Wilcoxon test results applied to the control group from 2016 and 2017 APUs. 

 APU 2016 APU 2017 

Attribute p-value conclusion p-value conclusion 

RNDVI 0.276 Accept H01 0.077 Accept H0 

Con 0.460 Accept H0 0.055 Accept H0 

Ener 0.511 Accept H0 0.068 Accept H0 

Max 0.567 Accept H0 0.230 Accept H0 

H 0.561 Accept H0 0.807 Accept H0 

α-ALOS2 0.549 Accept H0 0.622 Accept H0 
1 Wilcoxon test applied at significance level α = 0.05. Interpretation of the test: accepting the Hₒ hypothesis 

indicates that the samples follow the same distribution. 

3.2. Detection of Forest Volume Losses from Field Samples 

According to the Wilcoxon test results for APUs 2016 and 2017, in Ener and Max, the 

samples followed the same distributions (Table 3). For 2016 were obtained p-values of 

0.776 for Ener and 0.631 for Max. For 2017 p-values of 0.056 for Ener, and 0.756 for Max 

were obtained. These results suggest that the radar signal did not detect significant vari-

ations between the radiometric responses of the samples, denoting the low potential of 

this attribute. 

Table 3. Wilcoxon test results applied to the field data sample from 2016 and 2017 APUs. 

 APU 2016 APU 2017 

Attribute p-value conclusion p-value conclusion 

RNDVI 0.003 Reject H01 0.037 Reject H0 

Con 0.001 Reject H0 0.0001 Reject H0 

Ener 0.776 Accept H0 0.056 Accept H0 

Max 0.631 Accept H0 0.756 Accept H0 

H 0.0001 Reject H0 0.501 Accept H0 

α-ALOS2 0.0001 Reject H0 0.227 Accept H0 
1 Wilcoxon test applied at significance level α = 0.05. Interpretation of the test: accepting the Hₒ hypothesis 

indicates that the samples follow the same distribution; rejecting the Hₒ hypothesis implies accepting the H1 

hypothesis, which suggests that the sample distributions are different. 

For RNDVI attribute, the statistical test suggested that the sample distributions were differ-

ent in both APUs, with a p-value of 0.003 for 2016, and 0.037 for 2017, denoting sensitivity in 

detecting differences in forest volume due to selective logging events. Those results show that 

RNDVI was able to detect forest volume losses for both APUs (Figure 1 and b). After selective 

logging, there was subtle radar signal decay in the RNDVI. This result was expected, as the 

RNDVI is a biophysical index that is sensitive to the vegetation presence [19]. In this sense, the 
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radar signal decay denotes little or no presence of tree vegetation in the terrain resolution cells 

investigated, after thinning by selective logging processes. 

The Con attributes also showed sensitivity in detecting forest volume losses due to 

selective logging. The Wilcoxon test indicated that the differences between the sample 

distributions were significantly different, with p-values ≤ 0.0001 in APU 2016 and 2017. 

The Con attribute obtained an increase in the intensity of the pixel values after selective 

logging exploitation. This increase is associated with a greater contrast between the radi-

ometric responses of the vegetation samples. According to Hethcoat et al. [21], the high 

values in the Contrast measure obtained after selective logging disturbances may be asso-

ciated with the visual edges of the selectively logged areas. 

  
(a) (b) 

Figure 1. Detection of forest volume losses in APU 2016 (a), and APU 2017 (b) considering the 

RNDVI attribute derived from ALOS2 data. 

The Wilcoxon test applied to α-ALOS2 attribute indicated that the differences be-

tween the sample distributions were significantly different, with p-values between 0.0001 

in APU 2016. On the other hand, for APU 2017, the Wilcoxon test indicated that α-ALOS2 

tended to follow the same probability distributions, showing p-values of 0.227 (Table 3). 

In this sense, the α-ALOS2 attribute, when associated with the 2016 APU dataset, showed 

potential for detecting forest volume losses.  There was a decrease in pixel intensity in 

the samples after selective logging, indicating a decrease in the radar signal due to tree 

removal. This result was also expected, as the removal of trees leads to greater interaction 

of electromagnetic waves with the ground surface [22]. 

Regarding the H attribute, the Wilcoxon test applied for APU 2016, indicated that the 

differences between the sample distributions were significantly different, with p-values 

of 0.001. It was observed that there was slight radar signal decay after selective logging 

exploration. According to Khati et al. [22], this result was expected, because with the re-

moval of trees, there is an absence and/or a reduction in the structural volume of tree 

vegetation, consequently, there are fewer spreading mechanisms (leaves, branches, stems, 

trunks) interacting to depolarize the electromagnetic waves, resulting in lower resulting 

in a lower backscattering intensity in H.  

The H attribute for APU 2017, the Wilcoxon test suggests that samples tended to fol-

low the same probability distributions, showing p-values of 0.501 (Table 3). As observed 

with α-ALOS2, the longer time interval between the acquisition of the ALOS2 image and 

selective logging exploration may have influenced the results. The initial regeneration of 

vegetation in areas previously subjected to selective logging could have influenced aug-

mentation of the backscatter signal in the H attribute volume variations within the forest 

canopy. However, when considering a longer time frame, specifically five months post-

selective logging, these same attributes did not show any discernible trends or potential 

effects. 

5. Conclusions 
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The results obtained by the attributes extracted from dual polarimetric images from 

ALOS-2/PALSAR-2 showed different performances and capacities for detecting forest 

volume losses due to high-intensity selective logging (~27-29 m³ ha-1). The Contrast at-

tribute derived from the GLCM Matrix and the RNDVI biophysical index were particu-

larly sensitive to detecting forest volume losses due to selective logging processes in the 

two APUs investigated. 

Despite technological advances in the detection and monitoring of large-scale selec-

tive logging, there are still many uncertainties in assessing the impact of selective logging 

on the carbon balance, as well as the impact on the forest environment. Therefore, further 

investigations are warranted, encompassing diverse sensor systems and their combina-

tions, time series analyses, and the development of novel computer algorithms. These ef-

forts are essential to enhance our comprehension of the capabilities of these data in de-

tecting forest degradation attributed to selective logging processes. 
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