

Sustainable Architecture: Innovations and Perspectives for Multi-Family Housing in Timber-based Structures ⁺

Łukasz Mazur

1

2

3

4

5

6 7

8

19

20

Faculty of Engineering, Helena Chodkowska University of Technology and Economics, Jagiellońska 82f, 03-301 Warsaw, Poland.

* Correspondence: arch.lukaszmazur@gmail.com

+ Presented at the 1st International Online Conference on Buildings (IOCBD2023), 24-26 Oct 2023.

Abstract: The current methods of designing and using wood-based construction systems are going9through exciting changes. By adopting new and innovative technologies, it is now possible to create10residential buildings with less environmental impact. After examining the available research, this11article presents and describe five main categories of wood construction systems, highlighting their12advantages and applications. Choosing the right structural system is crucial in facing the sustaina-13bility challenges of today. It is important to consider different factors, such as the building function14or economic aspects.15

Keywords:Wooden construction; Building technologies; Green buildings; Sustainable develop-16ment;Architecture; Multi-family housing; Prefabrication; Renewable materials; Construction inno-17vations;Hybrid structures.18

1. Introduction

With global climate change and increasing environmental awareness, sustainable ar-21 chitecture is not just a trend but a necessity. Interest in environmentally friendly technol-22 ogies that minimise the impact of construction on the planet is greater than ever [1]. In 23 this context, wood is increasingly important as a low-energy material with a low carbon 24 footprint, especially for use in multifamily housing. Traditionally, wood has been associ-25 ated with small single-family homes or temporary structures. However, modern technol-26 ogy, innovative construction methods, and advanced scientific research have made it pos-27 sible to break these stereotypes. Today's multi-storey timber residential buildings are be-28 coming a symbol of sustainable architecture, combining the beauty of natural materials 29 with advanced technical solutions [2]. 30

Changing environmental conditions present a new challenge for urban planners and 31 developers. Today's metropolises, while important centres of innovation and research, are 32 also major sources of greenhouse gas (GHG) emissions that contribute to progressive cli-33 mate change [3,4]. The world's cities, although occupying only about 3% of the Earth's 34 surface, are the epicentre of global energy consumption and the source of significant GHG 35 emissions. Statistics record that up to 60-80% of total energy consumption and 75% of 36 global carbon emissions come from these population centres [5]. The excessively high val-37 ues indicate an urgent need to rethink urban planning and energy practises in cities. In-38 corporating renewable energy sources, such as solar, wind, or geothermal energy, can 39 significantly help decrease noxious gas emissions. Other steps include changing the meth-40 ods and materials used in construction. Wood may be essential to reduce CO2 emissions 41 as an alternative to harmful and energy-intensive building materials [6]. 42

Today's architecture of multifamily housing in the European Union (EU) is experiencing a revolution in the use of building materials and technologies. One of the most prominent trends that is gaining popularity is the return to its roots: the use of timber as 45

Citation: Mazur, Ł. Sustainable Architecture: Innovations and Perspectives for Multi-Family Housing in Timber-based Structures. Eng. Proc. 2023, 53, x.

https://doi.org/10.3390/xxxxx

Academic Editor: Firstname Lastname

Published: 14 November 2023

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

the primary construction material. The following publication examines timber-based con-1 struction systems used in recent residential developments in EU countries. As a material 2 with a long tradition in European construction, wood is experiencing a renaissance in the 3 context of innovative solutions. Innovative technologies make wood more durable, flexi-4 ble, and adaptable to the needs of today's property market [7]. A major aspect of this paper 5 is the analysis of a variety of construction systems. Each of these systems has its own 6 unique properties and potential applications, which are discussed in depth in the context 7 of the requirements and expectations of today's residential market. 8

2. Materials and Methods

The purpose of the study is to describe the options for building method of multifam-10 ily residential buildings with wood-based construction in Europe. To achieve this goal, 11 where used the desk research method and analysis of timber construction projects that 12 have been completed in EU countries. Based on this desk-research, it was possible to iden-13 tify the most used contemporary methods for the development of timber residential build-14 ings – these data are presented in Table 1. The rest of the paper discusses wood-based 15 construction systems and their use on a larger scale in construction industry. 16

3. Results

Timber building is one of the oldest construction systems and has evolved to meet 18 the changing needs of communities and technological advances. After reviewing the literature on timber structural systems, the author proposed categorising technologies used in multifamily buildings into five main categories, as detailed in Table 1.

Prefabrica-Structural Classification lp. Components tion possisystem bility Platform frame Wood frame 1. Studs; 2. Joists; 3. I/Metal web Yes 1 construction Balloon frame Beams; 4. OSB / Plywood. Yes 2 Post and beam 1. Post; 2. Beam. Yes Glued laminated timber 1. Beams; 2. Columns. Yes (GLULAM/GLT) Mass timber Laminated veneer 1. Beams; 2. Columns; 3 Yes lumber (LVL) Stressed skin cassette panels. Cross-laminated tim-1. Walls; 2. Floors; 3. Roofs; 4. Yes ber (CLT) Stairs. Panel construction 1. LVL; 2. GLT; 3. CLT. Yes (2D) Prefabricated 4 structure Volumetric modular 1. LVL; 2. GLT; 3. CLT; 4. Hybrid-Yes (3D) timber. Timber-steel hybrids 1. Steel Components: Timber-concrete hy- Beams and Columns; Steel Conbrids nectors. 2. Concrete Components: Hybrid-timber Yes 5 Beams and Columns; Concrete Concrete-timber hy-Slabs. brid 3. Timber Components: LVL;

GLT; CLT.

Table 1. Characteristics of technology for multi-family residential buildings in timber construction. 22

9

19

- 20
- 21

4. Composite steel-timber-con-

3.1. Wood Frame Construction

Wood frame structures are a highly innovative and effective construction method in 2 the building industry. Lightweight frameworks such as platform and balloon construction 3 integrate traditional techniques with modern solutions to offer effective and sustainable 4 solutions. The platform frame building method gives structure to a building by creating 5 it layer by layer. Each successively higher level is added to a previously completed plat-6 form. This method allows easy adjustments to the plans and modifications to the structure 7 during construction. It is commonly used in modern projects, providing stability and re-8 sistance to different loads. A characteristic feature of balloon frame construction is that 9 the external walls of the building are built as one continuous section, extending from the 10 foundation to the roof. It is based on long timber posts that carry loads throughout the 11 height of the building. Although this is a method that can speed up the construction pro-12 cess in certain applications, it requires careful design and accurate connections to ensure the durability and safety of the structure [8]. 14

3.2. Post and Beam

Post and Beam is a traditional construction method that learns from centuries-old 16 techniques while meeting modern building standards. Post and beam construction uses 17 large timber columns and equally large beams to form the basic structural frame. These 18 main elements are usually exposed, giving the building a distinctive and aesthetically 19 pleasing appearance. As technology has advanced, traditional post and beam construction 20 methods have been improved and adapted to meet today's needs. Modern connection 21 methods – using special joints, bolts and other advanced materials – give the structure 22 greater stability and durability. The design allows larger spans with fewer internal col-23 umns than other timber building systems, giving greater freedom in interior layout. It is 24 also common today to use Mass Timber material (e.i. CLT) as a building material for Post 25 and Beam. This increases the application possibilities for use in high-rise buildings, while 26 also replacing concrete. 27

3.3. Mass Timber

Mass timber construction is characterised by the use of large solid wood panels for 29 walls, floors, and roofs. It also includes innovative forms of sawn timber and can be used 30 in combination with other materials. Mass timber components are known for their 31 strength and can be used in tall structures, challenging traditional thinking that only con-32 crete and steel can be used in tall and high-rise buildings. Combining tradition and inno-33 vation, mass timber construction offers a sustainable, aesthetically pleasing, and structur-34 ally sound approach to modern housing buildings [9]. Examples of (selected) components: 35

- Cross-Laminated Timber (CLT): A multilayer wood panel made by gluing together 36 layers of wood at right angles to each other (Figure 1a). 37
- Glued laminated timber (GLULAM): Beams made by stacking layers of wood and bonding them together with durable and moisture-resistant adhesives (Figure 1b).
- Laminated veneer lumber (LVL): It is made by gluing several thin wood layers to-40 gether. Its enhanced strength makes it ideal for numerous construction uses (Figure 41 1c). 42

13

1

15

28

38

1

2

Figure 1. Examples of components mass timber: [a] CLT; [b] GLULAM; [c] LVL [source: Author].

3.4. Prefabricated Structure

Timber panel construction, also known as 2D construction (Figure 2a), has its roots 3 in traditional balloon and platform construction methods. It has become a cornerstone of 4 modern construction in countries such as the United States, Canada, and Scandinavian 5 countries. There are a several of reasons for its growing popularity: (i) flexibility in design, 6 it gives architects more freedom to create unique designs; (ii) ease of construction, this 7 feature makes the method accessible to a wide range of contractors, regardless of their 8 experience; (iii) sequentiality of installation, the ability to build floor by floor ensures effi-9 ciency and an orderly workflow; (iv) speed of execution, the limited assembly time on site 10 speeds up the entire investment process. Given these advantages, both in terms of time 11 and cost savings and the possibility of creating unique designs, it is expected that wood 12 panel construction technology will gain even greater interest in the construction world. 13

Volumetric modular (3D) (Figure 2b) timber structures refer to complete building 14units or modules manufactured off-site under controlled factory conditions. Each module 15 is pre-fabricated with interior finishes, fittings, and the necessary equipment. Once com-16 pleted, they are transported to the installation site. Unlike 2D prefabricated structures, 17 volumetric modular units are three-dimensional and can include entire rooms or sections 18 of a building, fitted with interiors such as a kitchenette or bathroom, fully wired and 19 plumbed. In summary, modular volumetric timber structures are at the forefront of inno-20 vative construction, offering a combination of speed, efficiency, and sustainability. They 21 represent a significant change in the way we think about construction, focussing on off-22 site fabrication to increase on-site productivity [10]. 23

Figure 2. Prefabricated structure: [a] wall – panel construction 2D; [b] volumetric modular (3D) 24 [source: Author]. 25

3.5. Hybrid-Timber

Hybrid timber systems use Mass Timber components in combination with other materials, including steel and concrete. Hybrid systems take advantage of the properties of each of the building materials used to maximise structural performance, and minimise the amount of material used. Due to their structural properties, steel and concrete are most commonly used as beams and columns in hybrid systems. Steel beams are typically used where longer spans or greater height of the building are required. However, concrete in 32

hybrid construction allows the requirements for fire and flood protection to be met, which
is why it is often used on the ground floor of a building. In addition, hybrid systems allow
buildings to be constructed in areas with difficult ground conditions, are lightweight due
to the use of wood, and can be used to support a wide range of materials [11].

Figure 3. High-rise wooden residential buildings: a) "Dalston Lane" building from London - height633,8 m CLT construction; b) "The Tree" building from Bergen - height 49,0 m CLT construction,7Glulam; c) "Haut" building from Amsterdam - height 73,0 m, Timber-Concrete Hybrid construction8[source: Internet, accessed 10/09/2023].9

4. Discussion

Modern multifamily housing is adapting to a rapidly changing reality in which the 11 priority is no longer just satisfying quantitative needs in terms of the number of available 12 dwellings, but also paying attention to qualitative and environmental aspects [12]. In de-13 veloped countries (such as the EU), there is a noticeable increase in public awareness of 14environmental issues. This growing awareness is increasingly affecting the construction 15 industry, especially in the multi-family housing sector [13]. This trend determines not only 16 the choice of materials and technologies, but also the overall approach to the design and 17 construction process, with increasing emphasis on energy efficiency and minimising en-18 vironmental impact. 19

Undoubtedly, choosing the appropriate construction system is crucial. Contempo-20 rary and innovative wood-based construction techniques allow architects to design im-21 pressive structures. These buildings are not only visually attractive, but also less harmful 22 to the environment [14,15]. As a result, both the scientific and the economic factors have 23 refocused their attention on the potential of using wood as a renewable material for ex-24 tensive construction. New building methods and materials using wood have been devel-25 oped as a result of increased interest. Now, multifamily residential buildings such as 26 Dalston Lane in London, UK, The Tree in Bergen, Norway, and Haut in Amsterdam, The 27 Netherlands (Figure 3) can be built using these innovations. 28

Architects and engineers face the challenge of considering a wide range of factors 29 when selecting the right structural system for a particular project. One of the most crucial 30 factors is the purpose and type of building. As an example, a retirement home will require 31 a different design approach compared to a contemporary apartment block for young pro-32 fessionals. Height is a factor in choosing materials and technology for stability, fire safety, 33 and protection against earthquakes. These are just some aspects to consider. Other factors 34 include local conditions such as soil and water levels and subsoil strength. When planning 35 a project, it is important to consider economic factors such as budget, material costs, im-36 plementation expenses, and transport capacity. These should be balanced against several 37

10

factors, including energy efficiency, durability, aesthetics, cost, and environmental impact, to find the best solution for the project.

5. Conclusions

Research has shown that the use of ecofriendly wood-based technologies is becoming 4 increasingly important in sustainable architecture. The study analysed completed multi-5 storey wooden residential buildings in Europe to identify five common timber building systems (Table 1). The research also showed that increasing growth in the construction of 7 multistorey timber housing relates to the progress made in engineered wood materials. 8 These can be wood-based panels, structural composite lumber, mass timber, and Engi-9 neered wood flooring. The number of new and innovative wood-based construction tech-10 nologies is constantly increasing, so choosing the right construction system for a project 11 is an important task. Modern wood-based technologies make it possible to create diverse 12 and interesting residential environments that meet high environmental standards and res-13 idents' expectations. 14

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Mazur, Ł. Selected Natural Factors Affecting in Housing Architecture in Today's Cities. Acta Scientiarum Polonorum. Architectura 1. 18 2020, 19, 83-91, doi:10.22630/ASPA.2020.19.2.20. 19
- Yadav, M.; Agarwal, M. Biobased Building Materials for Sustainable Future: An Overview. Materials Today: Proceedings 2021, 2. 43, 2895-2902, doi:10.1016/j.matpr.2021.01.165.
- 3. Satterthwaite, D. Cities' Contribution to Global Warming: Notes on the Allocation of Greenhouse Gas Emissions. Environment and Urbanization 2008, 20, 539-549, doi:10.1177/0956247808096127.
- Winkler, J.; Jeznach, J.; Koda, E.; Sas, W.; Mazur, Ł.; Vaverková, M. Promoting Biodiversity: Vegetation in a Model Small Park 4. Located in the Research and Educational Centre. J. Ecol. Eng. 2022, 23, 146–157, doi:10.12911/22998993/143997.
- 5. European Economic and Social Committee, Wood Construction for the Reduction of CO2 Emissions in the Building Sector; 2023.
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A Review of the Environmental Impacts of 6. Biobased Materials. Journal of Industrial Ecology 2012, 16, S169–S181, doi:10.1111/j.1530-9290.2012.00468.x.
- 7. Kolb, J. Systems in Timber Engineering: Loadbearing Structures and Component Layers; Birkhäuser: Basel; Boston, 2008; ISBN 978-3-7643-8689-4.
- Hurmekoski, E.; Jonsson, R.; Nord, T. Context, Drivers, and Future Potential for Wood-Frame Multi-Story Construction in Eu-8 rope. Technological Forecasting and Social Change 2015, 99, 181–196, doi:10.1016/j.techfore.2015.07.002.
- 9 Timber Construction Manual; Herzog, T., Ed.; Birkhäuser: Basel ; Boston, 2004; ISBN 978-3-7643-7025-1.
- 10. Ferreira Silva, M.; Jayasinghe, L.B.; Waldmann, D.; Hertweck, F. Recyclable Architecture: Prefabricated and Recyclable Typologies. Sustainability 2020, 12, 1342, doi:10.3390/su12041342.
- Starzyk, A.; Donderewicz, M.; Rybak-Niedziółka, K.; Marchwiński, J.; Grochulska-Salak, M.; Łacek, P.; Mazur, Ł.; Voronkova, 11. I.; Vietrova, P. The Evolution of Multi-Family Housing Development Standards in the Climate Crisis: A Comparative Analysis of Selected Issues. Buildings 2023, 13, 1985, doi:10.3390/buildings13081985.
- Alawag, A. M., Alaloul, W. S., Liew, M. S., Musarat, M. A., Baarimah, A. O., Saad, S., & Ammad, S. (2023). Critical success 12. 39 factors influencing total quality management in industrialised building system: A case of malaysian construction industry. Ain 40 Shams Engineering Journal, 14(2), 101877. 41
- Mazur, Ł.; Bać, A.; Vaverková, M.D.; Winkler, J.; Nowysz, A.; Koda, E. Evaluation of the Quality of the Housing Environment 13. Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review. Energies 2022, 15, 7750, doi:10.3390/en15207750.
- Godlewski, T.; Mazur, Ł.; Szlachetka, O.; Witowski, M.; Łukasik, S.; Koda, E. Design of Passive Building Foundations in the 14. Polish Climatic Conditions. Energies 2021, 14, 7855, doi:10.3390/en14237855.
- 15. Rybak-Niedziółka, K.; Starzyk, A.; Łacek, P.; Mazur, Ł.; Myszka, I.; Stefańska, A.; Kurcjusz, M.; Nowysz, A.; Langie, K. Use of 46 Waste Building Materials in Architecture and Urban Planning-A Review of Selected Examples. Sustainability 2023, 15, 5047, 47 doi:10.3390/su15065047. 48

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual au-49 thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 50 people or property resulting from any ideas, methods, instructions or products referred to in the content. 51

2 3

1

6

15 16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

42

43

44