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Abstract: With the rising impact of climate change on agriculture, insect-borne diseases are proliferat- 1

ing. There’s a need to monitor the appearance of new vectors to take preventive actions that allow 2

to reduce the use of chemical pesticides and treatment costs. Thus, agriculture requires advanced 3

monitoring tools for early pests and disease detection. This work presents a new concept design for a 4

scalable, interoperable and cost-effective smart trap that can digitize daily images of crop-damaging 5

insects and send them to the cloud server. However, this procedure can consume approximately 6

twenty megabytes of data per day, which can increase network infrastructure costs and require a 7

large bandwidth. Thus, a two-stage system is also proposed to locally detect and count insects. In 8

the first stage, a lightweight approach based on the SVM model and a visual descriptor is used to 9

classify and detect all regions of interest (ROI) in the images, which contain the insects. Instead of 10

the full image, only the ROI are then sent to a second stage on the pest monitoring system, where 11

they will be classified. This approach can reduce, by almost 99%, the amount of data sent to the cloud 12

server. Additionally, the classifier will identify unclassified insects in each ROI, which can be sent to 13

the cloud for further training. This approach reduces internet bandwidth usage and helps to identify 14

unclassified insects and new threats. In addition, the classifier can be trained with supervised data on 15

the cloud and then sent to each smart trap. The proposed approach is a promising new method for 16

early pests and disease detection. 17

Keywords: Bandwidth Optimization; SVM; Pests detection; Smart Trap 18

1. Introduction 19

Agricultural production has a significant impact on society and has faced some chal- 20

lenges in terms of pests and diseases. Each year, they account for up to 40 percent of global 21

crop production losses and a high cost to the economy of around 220$ billion [1]. Given 22

the wide range of transmitting agents and their attack dynamics, it’s difficult to define 23

appropriate control methods, even more considering conventional systems that require 24

manual analysis. This work aims to describe a new solution to automate that prediction 25

process and to enable the earlier detection of insect-borne diseases. Thus, the farmer can 26

reduce the treatment costs and the impacts on humans, plants and animals. 27

One way to control the risk level of pest propagation is to monitor the number of 28

invasive insects in a particular region. Nowadays, this is frequently carried out with 29

conventional chromotropic, pheromone and light traps that require a specialised person to 30

visit them in a time-consuming, boring and expensive way. Besides that, when considering 31

multiple trap locations and a weekly monitoring time interval for each one, it is not possible 32

to achieve an efficient detection of pest appearance. These aspects lead to a poor spatial 33

and temporal resolution of insect pest monitoring activity, resulting in late input data to 34

the Decision Support Systems. Consequently, the alerts for the farmer will be delayed and 35

the treatment costs will increase [2]. 36

In recent years, smart traps equipped with sensing devices have achieved high-level 37

importance due to their ability to automatically monitor pests and diseases. These systems 38
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support agricultural production and allow the reduction of labour, transport and logistics 39

costs. There are already some technologies emerging that stand out for capturing, detecting, 40

identifying and counting insects, which are carriers of diseases. Most of them are designed 41

to couple a sticky paper that is used to attract the insects. Different configurations have been 42

adopted with emphasis on delta and hive shapes. These solutions have been studied and 43

modified to maximize the number of captures on the field using sex pheromones or food 44

lures. Due to their closed structure model, they also present the advantage of protecting 45

the sticky paper and the attractant against environmental conditions. In contrast, solutions 46

that use colour as the main attractant tend to be open and to adopt a panel configuration 47

[3]. In an attempt to use a disruptive chromotropic trap, [4] proposed a new approach 48

using a four-sided sticky paper that takes into account the flight insect direction and the 49

density of captures in each one to predict the pest propagation behaviour. Additionally, the 50

authors develop a closed lid where the capture solution remains inside as long as the rain 51

and wind values do not fall below a defined threshold. This also helps to reduce the chance 52

of crowds of insects, thus avoiding overlaps between them that will have a negative impact 53

on the identification process through image analysis. When the smart trap is applied in 54

an environment with a large population of attracted insects, the sticky board becomes 55

saturated in a short time, requiring manual intervention in a higher frequency [5]. In order 56

to reduce that problem, [6] propose a motor-driven e-trap based on a yellow sticky trap to 57

automatically replace attractants and avoid insect overlapping, allowing long-acting work 58

without manual operation. The concept of the system is similar to the commercial solution 59

Trapview Self-Cleaning [7] however the authors show that the principles of reserving and 60

automatically replacing the attractants are different. In line with the cleaning mechanisms, 61

[8] also develops a novel monitoring system that avoids crowd insects. After attracting 62

them using a light source and killing them passing through an IR heating unit, they use a 63

vibration plate to disperse them into a moving conveyor, which will be positioned for a 64

photo to be taken. Then, the conveyor rotates to move away the insects that will fall into a 65

recycling box. 66

Alongside the development of hardware and structures for capturing and acquiring 67

data for monitoring systems, classification and identification methods have been worked 68

on as a way of automating the insect counting process. While the first one is only concerned 69

with characterizing a region of interest as part of a class, the second one provides the exact 70

location in the image of the classes under study. Thus, machine learning and Deep Neural 71

Networks (DNN) algorithms have been integrated and have been demonstrated to be an 72

important part, with high accuracy results in the early pest prediction [9]. An important 73

aspect to take into consideration when applying these algorithms is that even when the 74

metrics for evaluating them are good, a critical analysis of the results must be made. In 75

most cases, a pest alert should be generated to the farmer when the first insect appearance 76

happens. This means that a false detection should be prioritized over an undetected insect. 77

For this reason, [10] study two different DNNs, VGG16 and LeNet, and conclude that the 78

second one outperforms the other since the obtained recall in the training process presented 79

better results. The authors also proposed that the algorithms should run locally in the 80

sensing device and only the number of insects should be sent to the farmer. This allows the 81

reduction of the network bandwidth used and takes the opportunity to use Low Power 82

Wide Range (LPWR) technologies, such as LoRaWAN, to communicate data to the server. 83

DNN algorithms usually require large datasets in the training process and higher 84

processing power. Due to those requirements, other machine-learning approaches have 85

been considered. Both [11] and [6] run a Selective Search algorithm to predict potential 86

object’s location in the captured image. Then, they discuss and test solutions based on 87

Non-Max-Suppression algorithms to avoid overlapping regions and keep the ones with 88

higher probability. [11] concluded that soft-NMS with exponential penalty function got 89

better results, since shows less loss than conventional NMS methods. In turn, the authors 90

in [6] assume invariable the insect’s position and the illumination conditions. This allows 91

them to apply a difference estimation between consecutive frames and detect the presence 92
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of a new insect more efficiently. [12] use a deep-learning model YOLO to look for the insects 93

in the image and then classify the species with an SVM model. This extracts local features 94

(shape, texture, colour) and makes it easier to train the classification since it requires much 95

fewer samples from a dataset. Besides that, the authors do a fine counting with SVM and 96

some of the wrong insect detections from YOLO can be overtaken, increasing the accuracy 97

of the whole monitoring system. 98

We proposed a new concept design for a scalable, interoperable and cost-effective 99

smart trap that extend the pest monitoring application to a wide range of crops and species. 100

A two-stage system is also proposed to locally detect and count insects, thus reducing the 101

amount of data sent to the server. A lightweight approach based on a Visual Descriptor 102

and a trained SVM classifier is proposed to detect ROI in the images, which contain the 103

insects. Then, the ROI are sent to a second stage where they can be classified by DNN. 104

Table 1 presents some of the research works that most fit the recent evolution that serve as 105

comparison for our approach to pest monitoring. 106

Table 1. Some research works related to the proposed pest monitoring approach.

Configuration Bait Type Camera Processing Unit Communication Insect detection Local detection Trap
IR heating unit Light 12MP - - ResNet-based - [8]

Panel + Sticky paper Colour 8MP Raspberry Pi 3 B+ ✗
Connected Components

Labelling
- [4]

Sticky paper Colour 8MP Raspberry Pi 2 B GPRS YOLO+SVM ✓ [12]

Hive + Sticky paper Pheromone -
Raspberry Pi 3 +
Movidius Stick

LoRaWAN LeNet/VGG16 ✓ [10]

Hive + Sticky paper Pheromone <1MP GAP8 LoRaWAN SANN ✓ [13]
Hive + Sticky paper Pheromone <1MP STM32H743VI GSM MobileNet V2 ✓ [11]
Hive + Sticky paper Pheromone 8MP Raspberry Pi Zero W ✗ - - [14]

2. Methods 107

The concept of the proposed trap was developed around six fundamental principles: 108

(i) autonomous (ii) energetically sustainable without human intervention (iii) extensible to 109

a wide range of crops and species (iv) modular and interoperable with other devices (v) 110

provide the necessary information for the early and efficient prediction of a pest as well 111

as generating alerts for the appearance of new species (vi) cost-effectiveness. To ensure 112

the above principles, the trap was conceptualised from scratch, both in terms of hardware 113

and structure, taking into consideration low-cost components. Regarding the first one, an 114

intelligence unit was integrated into the trap using a low-power microprocessor Raspberry 115

Pi Zero 2W. This lightweight and cost-effective version was chosen to ensure the enough 116

processing power at a lower energy cost. It also has a large set of peripherals that allow it to 117

communicate with numerous devices, such as cameras, sensors and actuators. Besides that, 118

it has a wireless module that allows it to connect to any network or even act as an access 119

point for other devices, making easier their interoperability and data communication to the 120

trap, which will act as an IoT gateway. This way, all the data acquired on site, by different 121

client devices, can be shared to the internet using only a single point, reducing hardware 122

and communication costs. Two modules have also been added to reinforce the possibility 123

of communicating data with other devices and over the internet: (i) a LoRa transceiver 124

RFM98 provides the opportunity to communicate at a low data rate over a long range 125

while (ii) an LTE module SIM7600E makes it possible to transmit and subscribe high data 126

rate to and from the server. To avoid all these components reducing the autonomy of the 127

system, each communication module can be activated or not at any time. Additionally, a 128

low-power ATMEGA32u4 microcontroller is used to wake up the entire system only when 129

needed. This period is fully configurable and can be adapted to each case. Sensors and 130

actuators that require real-time and more frequent operation can also be added, without 131

running the whole system. The whole hardware is powered by a 12V 7Ah battery, which is 132

automatically rechargeable thanks to an LT3652 charger. This one employs an input voltage 133



Version November 13, 2023 submitted to Biol. Life Sci. Forum 4 of 8

regulation loop to maintain a solar panel (20W) at peak output power. If the input voltage 134

falls below a programmed level, it reduces, automatically, the charge current. LT3652 also 135

use a auto-recharge feature that starts a new charging cycle if the battery voltage falls 2.5% 136

bellow the programmed value. As soon as the charging cycle finish, a low-current standby 137

mode is applied. 138

According to the principle of extending the application to a wide range of crops and 139

species, the trap structure was designed to adapt its configuration to a delta shape working 140

with sex pheromones and colour attractants. This is possible using a servo motor that 141

allows switching between three different positions in relation to the camera: (i) standby 142

position and trap in delta configuration, with pheromone and white sticky paper inside 143

and chromotropic sticky paper on the bottom (ii) image acquisition of the delta trap (iii) 144

image acquisition of the chromotropic trap. All the positions are illustrated in Figure 1, 145

respectively left side, middle and right side. 146

Figure 1. Positions adopted by the smart trap in relation to the camera.

Additionally, a servo motor was also placed in the front with an attached brush that 147

remains above the camera lens while the trap is in the standby position, preventing the 148

entry of dust, insects, water and fertilizers. The camera used was the Raspberry Pi module 149

v2 which offers 8MP resolution, which is important to acquire small insects and make their 150

identification possible. The 3D trap model helped improve our concept and was necessary 151

to generate the print models. The entire trap has a built-in house and uses the polymer 152

PETG since it offers thermal and mechanical resistance. Some prototypes have already 153

been installed in vineyards, orchards and olive groves, as can be seen in Figure 2. All of 154

them are connected to a weather station, which acquires the temperature and humidity of 155

the air, as well as the spectrum of radiation that is affecting the crop. 156

Figure 2. Smart traps installed in olive groove (left), orchard (middle) and vineyard (right).

Since mobile communications proved to be quite unstable in weak signal locations, 157

the possibility of performing insect detection and counting locally in the trap was taken. 158

Considering the low-power microprocessor used and the short amount of data acquired, 159

a lightweight approach that can be easily retrained was adopted. Thus, the proposed 160

algorithm utilizes a SVM with colour and texture as features by concatenating the uniform 161

Local Binary Pattern (LBP) histogram and the Hue, Saturation, Value (HSV) histogram 162

of the image. SVM algorithms are appealing, especially for high-dimensional non-linear 163

classification problems. To train an SVM, the dataset is divided into two sets, training 164

and testing data, which consist of some data instances. Each data instance contains a 165

value related to the class label and several values related to the features. SVM aims to 166

construct a predictive model that can classify the instances in the test set based solely on 167

their characteristics. The SVM is a non-parametric supervised classification algorithm with 168

different configurations depending on the choice of the kernel function, which defines the 169
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transformation space for building the decision surface. The goal of a binary classification 170

task is to find an optimal separation hyperplane. 171

The LBP method is flexible and adaptable to many real-world problems. This method 172

is simple, efficient for feature extraction and computationally simple. The LBP method 173

compares the grey level value of the central pixel with the neighbour pixels with a prede- 174

fined grid. This comparison results in binary patterns capturing the local texture patterns, 175

which reveals the hidden information in the structure of an image. 176

The HSV colour space represents perceptual colour relationships and decouples colour- 177

related features (H and S) from the brightness information (V). This separation allows 178

attention to be focused only on the perceptual properties of colour, which can be highly 179

informative for classification tasks. 180

Figure 3 shows the flowchart with the main tasks of the proposed algorithm capable of 181

detecting insects in the input image, with detections as the output. The algorithm initiates 182

the process by computing the image’s LBP and HSV representations. Subsequently, the 183

algorithm systematically scans the image using a predefined number of windows and step 184

size. Within each ROI identified by the sliding windows, if the SVM classifies the region as 185

an insect, it is necessary to check the neighbourhood. If the probability of the current region 186

is greater than the neighbourhood, then the neighbourhood detections are eliminated and 187

the current detection takes precedence. This verification avoids several bounding boxes 188

detecting the same insect. Only the set of new detections is sent to the cloud server, thus 189

allowing to reduce the bandwidth used. 190

Figure 3. Flowchart of the algorithm for detection of insect using SVM.

3. Results 191

The classification and detection methods already described in Section 2 were trained 192

and tested taking into account four different datasets that are a result of the data acquired 193

using the developed monitoring system in field: two from an olive grove in Mirandela 194

(OG1 and OG2), with X and Y insect images, respectively, and two from an orchard in 195

Alcobaça (OC1 and OC2), with X and Y insect images, respectively. All of them were built 196

from iterative images over a certain period without changing the sticky paper. This means 197

that the last image acquired in each one was the accumulated result of several days of 198

capture, which led to obtaining quite populated images with possible insect overlapping. 199

To obtain data for the SVM, random cut-outs were extracted from the final image 200

within each dataset. Each cut-out was classified (insect or no insect), and a feature vector 201

was calculated, the concatenate histogram of LBP and HSV. The acquired dataset contains 202

data from 12,500 distinct images, with an 80:20 division between the training set (10,000) 203

and the testing set (2,500). The SVM can use distinct kernels that adapt to different cases, 204

so with the training set mentioned, different trainings were performed to find the SVM 205

that best adapts to the problem of insect detection. Table 2 shows the classification results 206

of the testing set obtained from training SVM with different kernels. The Radial Basis 207

Function (RBF) and polynomial (poly) kernels demonstrate superior performance in the 208

chosen metrics for both classes, with results above 85 %. The metrics utilized are duly 209

explained by Pinheiro et al. [15]. 210
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Table 2. Classification results of the test set obtained with SVM with different kernels.

Kernels Class Precision Recall F1 Score Accuracy

linear no insect 74 % 75 % 74 % 70 %insect 66 % 64 % 65 %

poly no insect 97 % 90 % 94 % 93 %insect 88 % 96 % 92 %

rbf no insect 97 % 91 % 94 % 93 %insect 89 % 96 % 92 %

sigmoid no insect 54 % 54 % 54 % 48 %insect 39 % 39 % 39 %

Since the RBF kernel has the best metrics and is less susceptible to overfitting, this was 211

the selected kernel. Figure 4 presents the results of the detection algorithm utilizing the 212

trained SVM with the RBF kernel. The algorithm was tested with three different window 213

sizes and a step size of half the window size. The algorithm identifies most insects captured 214

by the trap, with some false positives associated. Some of the windows overlap, this was 215

not an issue considered when the algorithm was developed. 216

Figure 4. Detection algorithm results using the trained SVM with an RBF kernel. Red bounding boxes
present ground truth. Blue bounding boxes present the algorithm’s predictions.

Regarding the bandwidth optimization that we proposed, an analysis was made 217

comparing the amount of data transmitted assuming a daily full image with the amount of 218

data that would be necessary to transmit if the proposed detection algorithm were locally 219

applied. For the analysis, it was considered a mean size of 10MB per full image and a mean 220

size of 13.1KB per insect (100x100 pixels). The results are mentioned in table 3. 221

Table 3. Bandwidth optimization with the proposed algorithm.

Dataset Acquisition days Captured insects Bandwidth used
without detection

Bandwidth used
after detection

Bandwidth
Optimization

OG1 180 205 1.76GB 2.69MB 98.5 %
OG2 180 190 1.76GB 2.49MB 98.6 %
OC1 134 115 1.31GB 1.51MB 98.9 %
OC2 134 140 1.31GB 1.83MB 98.6 %

4. Discussion and Conclusions 222

Automatic pest monitoring systems have evolved significantly over the last ten years. 223

Prototypes with different configurations and attraction methods have been developed in 224

order to better adapt to different crops and maximize the number of captures. In most 225

cases, the search for the optimal configuration has been directly related to the crop under 226

study and, consequently, to the pest being identified. In this work, we have proposed a 227

more versatile configuration from which we can extend its application to a wide diversity 228
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of crops and species since it can work with both sex pheromones and chromotropic sticky 229

papers or even simultaneously. 230

During continuous tests carried out in vineyards, orchards and olive groves, two 231

main difficulties were noted: (i) the need to change the paper at high intervals due to the 232

overlapping of insects and the movement of parts of their bodies caused by environmental 233

conditions (ii) the need to send full images to the server using mobile data in areas with a 234

weak signal, resulting in daily losses of information that can compromise the early warning 235

of a pest. Therefore, firstly, we consider important to add a mechanism for cleaning or 236

automatically changing the sticky paper, as suggested in the literature. Although they add 237

mechanical complexity to the trap and a higher cost in production, there will be a reduction 238

in labour costs and will promote better results for the identification algorithms. Regarding 239

the second difficulty, we decided to implement the insect identification process locally in 240

the trap. Since we had a low-power microprocessor and short data sets, we opted to use a 241

lightweight approach based on SVM models to classify insects or non-insects. So far, the 242

models have been tested and continually retrained with the images that were sent to the 243

server and subsequently annotated, achieving relevant performance. With the SVM model 244

integrated into an algorithm for identifying new insects in the image, we are able to send 245

only the object of interest and thus identify new threats and reduce, by almost 99%, the 246

bandwidth used. 247

When considering a system that integrates a mechanism for cleaning and automatically 248

changing attractants with a method for accurately detecting the presence of insect-borne 249

diseases in the crop, it will be possible to provide the agricultural sector with a long-acting 250

monitoring process that does not require manual operation. Most of the time currently 251

spent travelling and working to monitor insects won’t be longer necessary and the level 252

of confidence in the early prediction of diseases will be optimised. Besides that, it will be 253

possible to efficiently predict the appearance of new insects that, due to climate change, fly 254

to other regions where they are not yet accounted for in the databases. 255

The proposed approach have been followed this evaluation and intends to impact the 256

real world pest monitoring in Agriculture, taking advantage of the scalability, to work in 257

different crops and with different attractants, the interoperability with other sensing devices 258

and the cost-effective monitoring system developed to earlier identify new insect-borne 259

diseases, generating data and alerts to the farmer using an optimised bandwidth. 260
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