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Abstract: The cognitive state of a person can be categorized using the Circumplex model of emo-

tional states, a continuous model of two dimensions: arousal and valence. We exploit the Remote 

Collaborative and Affective Interactions (RECOLA) database which includes audio, video, and 

physiological recordings of interactions between human participants to predict arousal and valance 

values using machine learning techniques. To allow learners to focus on the most relevant data, 

features are extracted from raw data. Such features can be predesigned or learned. Learned features 

are automatically learned and utilized by deep learning solutions. Predesigned features are calcu-

lated before machine learning, and inputted into the learner. Our previous work on video record-

ings focused on learned features. In this paper, we expand our work onto predesigned visual fea-

tures, extracted from video recordings. We process these features by applying time delay and se-

quencing, arousal/valence labelling, and shuffling and splitting. We then train and test regressors 

to predict arousal and valence values. Our results outperform those from literature. We achieve a 

root mean squared error (RMSE), Pearson’s correlation coefficient (PCC), and concordance correla-

tion coefficient (CCC) of 0.1033, 0.8498, and 0.8001 on arousal predictions; and 0.07016, 0.8473, and 

0.8053 on valence predictions, using an optimizable ensemble. 
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1. Introduction 

The cognitive state of a person can be categorized using the Circumplex model of 

emotional states [1], a continuous model of two dimensions: arousal and valence, where 

arousal measures the energy level and valence measures the positivity level of a person’s 

emotion. In this model, emotions are divided into four categories: happy, angry, sad, and 

relaxed. Each of these emotions is associated with a quadrant of the circumplex model. 

Happy emotions have high valence and high arousal, anger—low valence and high 

arousal, sad—low valence and low arousal, and relaxed—high valence and low arousal. 

The arousal and valence values can be estimated via machine learning regression. 

We use the RECOLA database [2] which includes audio, video, and physiological 

recordings of online interactions between human participants to predict arousal and val-

ance values using machine learning techniques. We previously predicted arousal and va-

lence values using the physiological [3,4] and video [4,5] recordings of RECOLA. Features 

are attributes that describe the data. They can be predesigned or learned [6]. Learned fea-

tures are attributes that are automatically extracted and utilized by deep machine learning 

solutions during the learning process. On the other hand, predesigned features are attrib-

utes that are calculated on the data before the learning process, and provided as input to 
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the machine learner. Our previous work on the video recordings of RECOLA focused on 

learned features from convolutional neural networks (CNNs) such as ResNet-18 and Mo-

bileNet-v2. MobileNet-v2 achieved a root mean squared error (RMSE), Pearson’s correla-

tion coefficient (PCC), and concordance correlation coefficient (CCC) of 0.1220, 0.7838, and 

0.7770 on arousal predictions; and 0.0823, 0.7789, and 0.7715 on valence predictions. In 

this paper, we expand our work to analyze and assess the predesigned visual features, 

extracted from the video recordings of RECOLA. We propose a novel combination of pro-

cessing steps to prepare the visual features for regression. We leverage machine learning 

solutions such as regression trees, kernel regression, and ensemble regressors to predict 

the arousal and valence values of cognitive states. Our goal is to find the model(s) with 

the best prediction performance to later integrate into a virtual reality (VR) system that 

runs cognitive remediation exercises for users with mental health disorders (e.g., schizo-

phrenia). 

Solutions for the prediction of cognitive states ideally consist of two components: 

parametrization and recognition of facial expressions [6]. Parametrization is the process 

of specifying the visual features and coding schemes to describe the involved facial ex-

pressions. The visual features used for the prediction of cognitive states can be appearance 

or geometric features [7]. Geometric features represent the geometry of the face. Local 

Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) [8] is one method that 

is used in the extraction of appearance features, while facial landmarks [9] are usually 

used for geometric features. Examples of geometric features include the derivatives of the 

detected facial landmarks, the speed and direction of motion in facial expressions, the 

head pose, and the direction of the eye gaze. Appearance features represent the overall 

texture resulting from the deformation of the neutral facial expression. Appearance fea-

tures depend on the intensity of an image, whereas geometrical features determine dis-

tances, deformations, curvatures, and other geometric properties [6]. Coding schemes can 

either be descriptive or judgmental [6]. Descriptive coding schemes depend on surface 

properties and what the face can do to describe facial expression. Judgmental coding 

schemes depend on the latent emotions or affects that produce them to parameterize facial 

expressions. The facial action coding system (FACS) [10] is one example of descriptive 

systems. FACS is a system that describes all visually evident facial movements [10,11]. It 

divides facial expressions into individual components of muscle movement, called Action 

Units (AUs). Coding schemes such as facial AUs, as well as geometric and/or appearance 

features can then be treated as input parameters to machine learning regressors or classi-

fiers for the prediction of cognitive states.  

In the remainder of this paper, we will provide a literature review (Section 2), fol-

lowed by a description of the methods used in our solution (Section 3). Then, we include 

a discussion of our results (Section 4). Finally, we will conclude this paper with some clos-

ing remarks (Section 5). 

2. Literature Overview 

RECOLA [2] is a multimodal database of natural emotions that is often used in stud-

ies on the prediction of cognitive states. It contains video, audio, and physiological record-

ings. It also provides predesigned features for these recordings. Arousal and valence an-

notations were provided by 6 raters every 40 ms of recording. The mean of the 6 ratings 

was used to label the data in our work. The database contains 5-minute video recordings 

of 27 participants, where only data from 23 participants are publicly available. Since some 

of the data modalities in RECOLA contain records for 18 of the participants, we only used 

these 18 recordings from the RECOLA database to prove our concept. 

The authors of the original RECOLA database [2] further extended their work in [11], 

where they performed experiments on the database for the prediction of arousal and va-

lence values. They extracted 20 visual features on each video frame in the video recordings 

of RECOLA and along with their first order derivates. They then deployed a bidirectional 

long short-term memory recurrent neural network (BiLSTM RNN) to predict arousal and 
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valence measures. They compared the prediction performance of the RNN between mean 

ratings (average of annotations from all 6 raters) and all 6 ratings, using both single-task 

and multi-task learning techniques. For arousal, they achieved a CCC of 0.427 using multi-

task learning over all 6 ratings. For valence, they achieved a CCC of 0.431 using single-

task learning over all 6 ratings. The authors of RECOLA [2,11] later introduced the Au-

dio/Visual Emotion Challenge and Workshop (AVEC) in 2015 [12]. In AVEC 2018 [13], 

they experimented with the different types of visual features: appearance, geometric, 17 

facial AUs, and bags-of-words. For arousal, they achieved a CCC of 0.312 via multi-task 

Lasso, while using appearance features. For valence, they achieved a CCC of 0.438 via a 

support vector machine (SVM), while using geometric features.  

Other authors have also benefited from using the RECOLA database in their research. 

Han et al. [14] exploited the geometric visual features provided by AVEC to predict 

arousal and valence values through a RNN. They implemented an implicit fusion frame-

work for joint audiovisual training. They achieved a CCC of 0.413 and 0.527 on arousal 

and valence predictions, respectively. Albadawy et al. [15] used the visual features pro-

vided by AVEC 2015, which included appearance (LGBP-TOP) and geometric (Euclidean 

distances between 49 facial landmarks) features. For arousal and valence predictions, they pro-

posed a joint modelling strategy using a deep BiLSTM for ensemble and end-to-end mod-

els. Their ensemble BiLSTM model achieved a CCC of 0.699 and 0.617 for arousal and va-

lence, respectively. In our work, we used and further processed the basic features extracted 

by the authors of RECOLA in [11], and experimented with a variety of regressors to pre-

dict the arousal and valence values of cognitive states. 

3. Methods 

We processed the visual features of RECOLA by applying time delay and sequenc-

ing, arousal and valence annotation labelling, and data shuffling and splitting. We then 

trained and tested regressors to predict the arousal and valence values. The following sec-

tions will discuss the details about our processing steps and regression methodology.  

3.1. RECOLA’s Predesigned Visual Features 

The video recordings of RECOLA were sampled at a sampling rate of 25 frames/s, 

where visual features were extracted for each video frame [11]. As predesigned visual 

features, RECOLA contains 20 attributes alongside their first order derivative, resulting 

in 40 features in total. These attributes/features include 15 facial AUs of emotional expres-

sions, the head-pose in three dimensions (i.e., X, Y, Z), and the mean and standard devia-

tion of the optical flow in the region around the head. The AUs are AU1 (Inner Brow 

Raiser), AU2 (Outer Brow Raiser), AU4 (Brow Lowerer), AU5 (Upper Lid Raiser), AU6 

(Cheek Raiser), AU7 (Lid Tightener), AU9 (Nose Wrinkler), AU11 (Nasolabial Deepener), 

AU12 (Lip Corner Puller), AU15 (Lip Corner Depressor), AU17 (Chin Raiser), AU20 (Lip 

Stretcher), AU23 (Lip Tightener), AU24 (Lip Pressor), and AU25 (Lips Part) from FACS. 

For more information about these features and their extraction, please refer to [11]. We 

used these features in our work. 

3.2. Time Delay and Sequencing 

RECOLA’s video recordings were sampled at a rate of 25 frames/s. This means that 

1 frame was captured every 0.04 s (40 ms). The visual features were calculated on each 

frame, meaning that they were provided every 40 ms as well. Since other data modalities 

of RECOLA only started being recorded after 2 s (2000 ms), we skipped any readings that 

occurred before that time. As a result, the first 50 frames (2 s × 25 frames/s) of the record-

ings were unused in our work. 
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3.3. Annotation Labelling 

The data in RECOLA were labelled with respect to the arousal and valence emotional 

dimensions. The data samples were manually annotated using ANNEMO, an annotation 

tool, developed by Ringeval et al. [2]. Each recording was annotated by six raters. The 

mean of these six ratings was used to label the data in our work. The mean arousal and 

valence values were also sampled every 40 ms. As we proceeded in Section 3.2, the first 

50 annotations were discarded. The remaining annotations were accordingly used to label 

the corresponding vectors of visual features. All labelling and fusion of data samples and 

features were completed according to the timing of the video frames. 

3.4. Data Shuffling and Splitting 

Data shuffling ensures the randomization and diversity of the data. The data were 

shuffled and split, where 80% went towards training and validation, and 20% went to-

wards testing. Our training and validation dataset was 106,201 frames × 40 features in 

size, while the testing dataset was 26,550 frames × 40 features in size. 

3.5. Regression 

For the prediction of arousal and valence values, we used an optimizable ensemble 

regressor. We also experimented with other regression models for comparison purposes: 

tree regressors, regression kernels, and ensemble regression. We trained and validated 

four tree regressors (fine, medium, coarse, and optimizable tree), two regression kernels 

(SVM and least squares regression kernel), and three ensembled regressors (boosted and 

bagged trees). A fine regression tree is small with a leaf size of 4 [16]. A medium regression 

tree has 12 leaves. A coarse regression tree is large and has a leaf size of 36. An optimizable 

regression tree optimizes the minimum leaf size through a Bayesian optimizer. Regression 

kernels are Gaussian regression models for nonlinear regression over large datasets. An 

SVM kernel maps the features into a high-dimensional space and fits a linear SVM model 

to the transformed features. A least squares regression kernel maps the features into a 

high-dimensional space and fits a least squares linear regression model to the transformed fea-

tures. The boosted trees model ensembles regression trees using the LSBoost algorithm. 

The bagged trees model ensembles regression trees by bootstrap-aggregation. An optimi-

zable regression ensemble optimizes training hyperparameters (ensemble method, num-

ber of learners, learning rate, minimum leaf size, and number of predictors to sample) via 

Bayesian optimization. We implemented 5-fold cross-validation during training to avoid 

overfitting.  

4. Discussion of Results 

After training the aforementioned models, we tested them by predicting the arousal 

and valence values on the testing set to evaluate the performance when presented with 

new data. Table 1 summarizes the validation and testing performances in terms of the 

RMSE, PCC, and CCC performance measures. A smaller RMSE value signifies better per-

formance, whereas greater PCC and CCC values signify better performance. We have 

achieved a testing RMSE, PCC, and CCC of 0.1033, 0.8498, and 0.8001 on arousal predic-

tions, respectively. We have achieved a testing RMSE, PCC, and CCC of 0.07016, 0.8473, 

and 0.8053 on valence predictions, respectively. These performances were obtained using 

an optimizable ensemble regressor. Our performances are better than those from the lit-

erature [11–15] (see Section 2), who performed more complex processing and feature ex-

traction. In Table 1, the validation performances were evaluated by performing 5-fold 

cross validation across the training data. The testing performances were computed by us-

ing the trained model for predicting the arousal and valence values of the testing set. The 

rows corresponding to the best prediction performances are displayed in bold font in Ta-

ble 1. Figure 1 displays a plot of the predicted arousal and valence values against the ac-

tual values, as per the best model (i.e., optimizable ensemble). In the plot of a perfect 
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regression model, the predicted values would be the same as the actual values, resulting 

in a diagonal line of points [16]. Models where the points are scattered near the diagonal 

line represent good models, with less errors. Table 1 and Figure 1 also compare the per-

formances of our models for learned [4] and predesigned features. Using predesigned fea-

tures showed an improvement in our prediction performance. 

Table 1. Summary of Prediction Performances. 

Prediction Regression Type Validation RMSE Testing RMSE, PCC, CCC 

Arousal 

Fine Tree 0.15389 0.1477, 0.6812, 0.6805 

Medium Tree 0.14601 0.1410, 0.6902, 0.6838 

Coarse Tree 0.14477 0.1410, 0.6731, 0.6516 

Optimizable Tree 0.14351 0.1396, 0.6861, 0.6719 

SVM Kernel 0.13665 0.1354, 0.7018, 0.6807 

Least Squares Kernel 0.13444 0.1331, 0.7097, 0.6633 

Boosted Trees 0.161 0.1607, 0.5463, 0.3743 

Bagged Trees 0.11285 0.1082, 0.8304, 0.7796 

Optimizable Ensemble 0.10791 0.1033, 0.8498, 0.8001 

MobileNet-v2 [4] 0.12178 0.1220, 0.7838, 0.7770 

Valence 

Fine Tree 0.10191 0.0981, 0.6975, 0.6967 

Medium Tree 0.097111 0.0944, 0.7011, 0.6947 

Coarse Tree 0.097623 0.0948, 0.6826, 0.6610 

Optimizable Tree 0.096525 0.0945, 0.6922, 0.6801 

SVM Kernel 0.094882 0.0943, 0.6855, 0.6495 

Least Squares Kernel 0.092417 0.0916, 0.7030, 0.6574 

Boosted Trees 0.11142 0.1104, 0.5525, 0.3467 

Bagged Trees 0.074689 0.0714, 0.8421, 0.7962 

Optimizable Ensemble 0.073335 0.0702, 0.8473, 0.8053 

MobileNet-v2 [4] 0.08309 0.0823, 0.7789, 0.7715 

 

  
(a) (b) 

Figure 1. Predicted versus actual plots of (a) arousal, and (b) valence predictions by an optimizable 

ensemble trained on visual features (green), and MobileNet-v2 trained on video frames (blue). 

5. Conclusions 

In conclusion, we performed arousal and valence predictions by exploiting the pre-

designed visual features of the RECOLA database. The feature vectors were processed 

and accordingly labelled with their corresponding arousal or valence annotations. We 

trained, validated, and tested an optimizable ensemble as well as other regressors to 
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predict arousal and valence values. The optimizable ensemble achieved a RMSE, PCC, 

and CCC of 0.1033, 0.8498, and 0.8001 on arousal predictions, and 0.07016, 0.8473, and 

0.8053 on valence predictions. To the best of our knowledge, our prediction performances 

on arousal and valence predictions are the best in comparison to the literature. Going for-

ward, we will carry out our project with the optimizable ensemble as the prediction mech-

anism for predesigned visual features. Since we achieved good prediction performance 

using physiological [3,4] and visual data, we can work on acoustic data and start combin-

ing our solutions for the different data modalities. In the future, we will apply our findings 

to real data, obtained from a VR system. 
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