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Abstract: The present study aims to design a low-cost smart AI powered node, to serve as a flood 
Early Warning System complete solution. The node is designed to predict forthcoming flood 
events by capturing and combining critical data related to such phenomena. Such data are the wa-
ter level at rivers or other water discharge basins, rainfall, soil moisture, and material displace-
ment at river slopes. The node will autonomously monitor the above quantities at a high frequen-
cy rate, and selectively upload them to a server only when verified conditions for a forthcoming 
flood will exist. These conditions will be evaluated by the local ML model. This will allow each 
node to reliable predict flood events and issue local and remote alarms. Combination of several 
nodes at an area of interest will form a robust and reliable Early Warning System. 
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1. Introduction 
Natural disaster management presents a challenging field of research and technolo-

gy applications. Especially during the last decade the climate change has led to several 
occurrences of extreme weather events leading to severe natural disasters [1]. Research-
ers from various scientific fields target towards viable technological solutions to aid dis-
aster management. One of the most critical natural disasters is the floods. Their extent 
and magnitude often cause huge social, economic, health and safety impact [2]. 

Flood management via precipitation prediction and hydraulic modeling was 
proved to be less effective to predict floods [3]. To aid the accuracy of the prediction 
several more measurements are required. At this scope, many attempts have been made 
in the past to employ the Internet of Things (IoT) technology [4], and several IoT aided 
Early Warning Systems related to floods have been designed and proposed [2,5–8]. The 
IoT can be roughly described as a system that incorporates small and remote electronic 
devices of low-power and usually low-cost that samples data and transmit them to an 
IoT server for further processing. At the case of EWS’s, data from the nodes are used as 
the input data to several models of the disaster prediction. 

Since the number of the IoT nodes presents a high growth that, it is reported that 
both the network communication latencies [9], and the time needed to process the vast 
amount of data in order to conclude on certain alarms and/or actions, is increased. Also, 
the increasing number of nodes stresses the wireless communication channels and this 
can also induce further communication latencies. The increasing latencies lead to delays 
on taking certain actions. Taking into consideration that the data usage can also be trans-
lated to cost, the need to locally process the collected data directly at the end devices has 
emerged.  
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While some actions can be triggered using simple threshold values of the received 
data, more complex decisions, such as those related to flood prediction, require sophisti-
cated algorithms. According to the latest literature [4,9,10], the most popular method of 
applying such complex algorithms is the Artificial Intelligence (AI). When implemented 
directly on the IoT nodes, this technology is called Artificial Intelligence of Things 
(AIoT) [2]. AIoT requires more system resources such as computational power and 
memory, which are offered in modern embedded platforms and Microcontroller Units 
(MCU). In [7], the authors claim to have developed the first large-scale IoT-based real-
time flood forecast system that has been enabled by AI and deployed in real world. 

In the present study, a node capable to execute TinyML models and perform AI al-
gorithms is designed. The node has all the specifications to serve as an IoT device. It is 
power autonomous, network connected, and interfaces with various sensors and actua-
tors. The sensor suite employed matches the needs to serve as part of an EWS aimed for 
floods. Since major flood phenomena relate to river bank collapses, the design is also 
oriented towards this phenomenon. To the best of the authors’ knowledge, this is the 
first study that utilizes accelerometer data at river related terrestrial locations to study 
the relation of river bank/slope movements to upcoming flood event. In all other flood 
related studies, the combination of accelerometer data mainly relate to civil infrastruc-
ture monitoring. 

2. Materials and Methods 
The proposed system is based on a system-level designed electronic device, referred 

to as the node. The node is completely custom designed, both in hardware and in soft-
ware. The hardware design and the operating sequence of the device are described at the 
following subsections.  

2.1. Hardware 
The main parts and modules of the node are the Microcontroller unit (MCU), the 

power supply unit (PSU), and the data connectivity unit (modem). All circuitry was 
hosted in a custom designed printed circuit board (PCB), and within a commercial IP65 
rated project box, in order to withstand external environmental conditions at the place of 
deployment. A short description of each main part of the node is presented at the fol-
lowing paragraphs.  

The selected MCU is the Microchip ATmega2560 8-bit AVR controller. This MCU 
offers enough resources (20 MHz clock, 8 kB of SRAM, 256 kB Flash) to be able to run 
TinyML models, custom designed for 8-bit architectures. The MCU also has plenty on-
board peripherals, supporting multiple serial communication protocols and Analog to 
Digital converters. The selected module hosting this MCU is the RobotDyn Mega 2560 
PRO [11]. The module also offers USB to TTL converter to easily re-program the MCU, 
together with a flexible power management circuit and ultra-compact footprint. 

The PSU is based on a single 3.7 V, 5 Ah, 26650 form factor, Li-Ion battery cell 
paired with a battery charger and protection circuit using the TP4056 Integrated Circuit 
(IC). The power source to charge the battery is a 6 V Solar Panel able to provide a maxi-
mum 1 W of charge power. 

Data connectivity is provided via Simcom’s SIM7600G modem [12]. The modem is 
fitted at an OEM breakout board, which also bears a power management circuit, a SIM 
card socket, antenna connectors, and all components needed for the modem’s recom-
mended operation. The modem provides LTE/GSM (4G/2G) connectivity. 

The block diagram of the system is presented at Figure 1. The various peripherals 
communicate differently to the MCU. The modem occupies a hardware USART port. 
Regarding the sensors, the accelerometer uses the I2C line of the MCU, the analog out-
put of the soil moisture sensor is read using one 10-bit ADC, while the rain gauge’s out-
put pulses are read by the MCU utilizing one external interrupt pin. The raw battery 
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voltage output is used as the main Vcc powering all electronic modules, since each 
module has its own power management and voltage regulation circuitry. This was a 
primary voltage regulator is omitted.  

 
Figure 1. The block diagram of the node. 

The various external sensors are cable connected to the node. The use of cable 
glands ensure the IP rating of the node’s case, and reliefs any stress that may be applied 
to the cables. The sensors selected for this application are a soil moisture sensor (Trueb-
ner SMT50 [13]), an ultrasonic ranger used as a water level sensor (MaxBotix MB7066-
100 [14]), an accelerometer and gyroscope sensor (Invensense MPU6050) hosted at an 
OEM breakout board, and a rain gauge sensor (DFRobot SEN0575 [15]). A photograph 
of a complete prototype and a map of the first deployment location are depicted in Fig-
ure 2. 

 
Figure 2. A photograph of the complete prototype (left), and the first deployment location (right). 

2.2. Operating Sequence 
The second important part is the Firmware (FW) and the operating sequence of the 

device. The operating logic diagram is presented in Figure 3. When the node is first 
powered up, an initialization routine is run, to check that the system is fully functional. 
Then, the node proceeds to a periodic data acquisition from the sensors. Inertial meas-
urement unit (IMU) data from the accelerometer are retrieved at a frequency of 4 Hz, 
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and stored at a circular buffer that has a total length of 240 measurement sets. This pro-
vides the opportunity to recall a detailed IMU history of 60 s at any moment. Data from 
the soil moisture sensor, the water level meter, and the rain gauge are sampled at a peri-
od of 5 min, and stored a secondary circular buffer with total length of 288, providing a 
measurement history of 24 h.  

 
Figure 3. The logic diagram of the Firmware. 

The secondary buffer is uploaded once per day to the server to keep record of the 
rain and the soil moisture. On the contrary, the one minute historic data of the accel-
erometer are uploaded only at certain occasions. These are the MPU6050 internal pro-
grammable interrupt at shake detection, or the existence of an event of angle change cal-
culated according to the following equation [16]: 𝑎ி ൌ 𝑐 ൈ 𝑎ீ ൅ ሺ1 െ 𝑐ሻ ൈ 𝑎஺, (1) 

where: 𝑎ி: the filtered angle, 𝑐: filter tunable constant (0 < c < 1 in order to have a complementary filter that neither 
overshoots nor attenuates), 𝑎ீ: calculated angle using gyroscope data, and 𝑎஺: calculated angle using accelerometer data. 

This logic ensures that critical short-term historical data related to possible material 
displacement at river slopes will be retrieved. Each of these datasets will be matched to 
the actual physical phenomenon of flood or landslide at the river bank, if apparent, and 
thus be classified. These data will be used as the main training dataset for the tinyML 
model to detect floods and landslides at river banks. Alongside to the accelerometer da-
ta, precipitation, temperature/RH and soil moisture data will also be contributing to the 
model training. 

The first version of the system will act mostly as a filtered critical data acquisition 
device, and when the TinyML models are developed, a new firmware will be uploaded 
to test the efficiency of the model. The Newton framework will be used to train and pro-
duce the TinyML model, customized for the 8-bit architecture of this system. Newton is 
a trusted high-level framework, perfectly fitted for applications requiring fast develop-
ment avoiding an in-depth Neural Network optimization. 
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After loading the TinyML code to the node, when a node detects the risk of flood 
certain local actions can be taken, such as issuing an alarm sign or actuating electrome-
chanical devices to engage a certain anti-flood infrastructure. Certainly both the data re-
lated to the detection of flood risk, and the actions applied by the end device will be up-
loaded to the IoT server for further processing and consequent management actions. 

3. Results & Discussion 
The overall system proved to be well designed. Operationally the node performed 

stable, and the sensor readings were consistent and reliable. Power-wise the node pre-
sented a moderate average current consumption of about 30 mA when acquiring data, 
and about 50 mA when in data transmission mode. The overall power autonomy is ap-
prox. 5–6 days on a fully charged battery. Although this battery life seems rather short, 
the real-time and continuous sampling of the sensors data actually justifies this perfor-
mance. 

FW logic in terms of data acquisition and upload worked seamlessly. Communica-
tion via cellular network proved to be very consistent, with short network registration 
and upload/download latencies. The customized data upload protocol reduced data us-
age to the extent that an inexpensive data plan is sufficient (i.e., 10 MB/month). The pro-
totype node was manually triggered to upload five IMU datasets of 60 s duration each. 
Thus, a 300 s IMU signal was obtained, presented in Figure 4. 

 
Figure 4. Sample IMU signals (yaw, roll, and pitch, top to bottom). 

According to the project’s timeline, it is expected that the first training dataset will 
be ready by the end of Q2 2024, and that immediately after the TinyML models will be 
deployed. This way the proposed system will be tested in real world conditions during 
the wet season of 2024. 

4. Conclusions 
This research presented the concept, architecture, design and development of a 

low-cost AI powered IoT node aimed for flood Early Warning Systems. The node inter-
faces to several sensors, monitoring critical quantities related to floods, such as the water 
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level at a riverbed, the precipitation, the soil moisture and the material displacement at 
river slopes. The first stage of the system, i.e., the development of the prototypes, is con-
cluded. The nodes were tested thoroughly at a laboratory environment and proved to be 
ready for the next stage of this research. The second stage will be the deployment of a 
certain amount of nodes to the area of interest, the collection of the training dataset for 
the TinyML model, and the actual training of the model. Further on, the third stage will 
be upload of the model to the end nodes, the test of the model and the characterization 
of the accuracy for flood prevention. New datasets retrieved from the third stage may 
also be used for further training and improvement of the model. All findings are sched-
uled to be published when available. 
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