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Abstract: This study aims to enhance additive manufacturing (AM) quality control. AM builds 3D 
objects layer by layer, potentially causing defects. High-resolution micrograph data captures 
internal material defects, e.g., pores, which are vital for evaluating material properties, but image 
acquisition and analysis are time-consuming. The research introduces a hybrid machine learning 
(ML) approach that combines model-based image processing and data-driven supervised ML to 
detect and classify different pore types in AM micrograph data. Pixel-based features are extracted 
using, e.g., Sobel and Gaussian filters on the input micrograph image. Standard image processing 
algorithms detect pore defects, generating labels based on different features, e.g., area, convexity, 
aspect ratio, and circularity, providing an automated feature labeling for training. This approach 
achieves sufficient accuracy by training a Random Forest as hybrid model-data-driven classifier, 
compared with a pure data-driven model such as CNN. 

Keywords: additive manufacturing; a pore classification; machine learning; numerical image  
analysis 
 

1. Introduction 
1.1. General Motivation 

Medical implants have transformed healthcare, yet their production presents 
significant challenges. Additively manufactured Ti6Al4V implants can develop porosity, 
impacting mechanical properties, particularly under dynamic loads. Understanding the 
relationship between manufacturing parameters and implant quality, especially post-HIP 
treatment, is crucial. Laser powder bed fusion (LPBF) is an additive manufacturing 
technique that constructs intricate components with complex shapes layer by layer [1]. 
This technique involves the application of a fine powder layer using a thin blade, followed 
by localized melting using a laser. These steps are iteratively performed until the 
components reach their desired final height [2]. Component mechanical characteristics, 
similar to powder metallurgy, depend on factors like relative density and defect shapes 
[3], which are influenced by several variables such as laser power, scanning speed, and 
particle properties [4]. These factors can lead to defects like cracks and porosity, which 
are linked to applied energy density [5]. This research aims to study of critical defects in 
additively manufactured medical implants, offering supervised machine learning 
methods for the feature extraction of metallurgical micrographs to detect and classify 
different defects. To detect defects, different model- and data-driven approaches are 
investigated. The major advantage of a model-driven over a pure data-driven approach 
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is the explain ability and tractability of the model, i.e., a correlation between classification 
output and geometric features that are amplified by the selected filter operators. 

1.2. Related Work 
In our investigation of common pore types in additive manufacturing, we have 

identified several distinct categories. Keyhole pores [6,7], characterized by vapor bubbles 
trapped in the melt pool during printing and the potential for merge process pores, exhibit 
dimensions ranging from microscopic to millimeters, featuring keyhole-like voids and 
channeling. These defects result in reduced mechanical strength, diminished fatigue 
resistance, and heightened susceptibility to crack initiation. Gas pores [8], closely related 
to keyhole pores but with slight shape differences (gas pore is a circular keyhole), share 
the same vapor bubble characteristics and similar size dimensions. They display irregular 
distribution and spherical shapes, contributing to decreased fatigue life, lowered 
mechanical strength, and compromised surface finish. Lake of Fusion (LOF) pores [8,9], 
attributed to insufficiently melted material, can vary in size up to millimeters, presenting 
inter-layer gaps and unfused regions that serve as starting points for cracks under stress. 
Un-Melted Particle Pores [8,10,11], a subset of LOF, are characterized by the inclusion of 
unmelted powder within the pore, sharing similar dimensions and geometric features, 
and similarly contributing to crack initiation and growth. Process pores [9], identified by 
low packing density of powder, hollow particles, and entrapped inert gas, are typically 
microscopic to less than 100 μm in size, with irregular distribution and spherical shapes 
of minimal area, exerting a relatively minor impact on material properties. Finally, cracks 
[12], ranging from microscopic to millimeter dimensions and featuring a large aspect ratio, 
pose the most significant risk for initiating mechanical failures within the additive 
manufacturing process, often arising from the presence of other pore types or inherent 
defects. A detailed summary of these pore types is available in Table A1 in Appendix A 
for reference. 

Most of the work in the classification of defects in additive manufacturing using 
supervised machine learning focuses on categorizing defects in images. For instance, Mika 
[9] utilized a Random Forest Tree model to examine the occurrence of pores in binary 
micrograph images, achieving a classification accuracy of around 95% for keyhole, lack of 
fusion, and process pores. 

Another approach by Zhang et al. [13] involved the use of Support Vector Machines 
(SVM) for defect detection in Ti-6Al-4 V additive manufacturing. It involved extracting 
geometric features from thermal images, resulting in an accuracy of 90.1% for 
distinguishing porous and non-porous defects. In contrast, Convolutional Neural 
Networks (CNNs) excelled in handling image-based defect detection problems. Scime et 
al. [14] applied multi-scale CNNs for in situ defect detection, achieving high accuracy in 
anomaly detection and differentiation (97%, 85%, and 93%, respectively). 

While these models perform well with larger datasets, the challenge of limited data 
and its annotation (labeling without ground truth) has led to the adoption of semantic 
segmentation. Semantic segmentation assigns human-interpretable classes to each pixel 
in an image. Recent research addressed the binary pixel segmentation of additive 
manufacturing defects in X-ray Computed Tomography (XCT) 3D images. To address 
issues such as poor contrast, small defect sizes, and appearance variations, a 3D U-Net 
model was proposed. When applied to an AM dataset, this model achieved a mean 
Intersection over Union (IOU) value of 88.4% [15]. 

1.3. Contribution of Our Research 
In this study, we employ semantic segmentation techniques with reduced training 

data due to the time-intensive nature of data generation. We introduce a model-driven 
data-driven approach utilizing a Random Forest (RF) classifier, a supervised machine 
learning method, for efficient pore classification, particularly effective with limited 
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training data. Comparative reveals that conventional pure data-driven models like 
Convolutional Neural Networks (CNN) underperform in contrast to our model-driven 
data-driven model. Our model is primarily designed to predict four distinct pixel classes: 
background (class 0, trivial class), Lack of Fusion (LOF) (class 1), gas keyhole pores (class 
2), and process pores (class 3). 

The next sections proceeds with an overview of the used materials and methods, 
subdivided into subsections describing the dataset, preprocessing, and machine learning 
classifiers, including Random Forest (RF) and Convolutional Neural Network (CNN). The 
performance metrics used are also explained. The “Experimental Design” section details 
the research methodology. “Results and Discussion” presents the experimental outcomes, 
comparing classifier performance and discussing findings. Finally, the “Conclusion and 
Future Work” section will summarize ore preliminary results and key findings. 

2. Materials and Methods 
2.1. Dataset 

To facilitate both unsupervised and supervised defect classification modeling, a 
dedicated data pipeline and database were established for our study. The dataset 
encompasses diverse manufacturing process parameters for Ti6Al4V, including laser 
power, layer thickness, hatch distance, and scan speed. The dataset comprises 400 distinct 
process parameter combinations, printed in Ti6Al4V on an SLM 125 HL (SLM Solutions 
GmbH, Lübeck, Germany). Specifically, the laser power, scan speed, hatch distance, and 
layer thickness were systematically varied. Laser power ranged randomly from 152 W to 
350 W, scan speed varied randomly between 803 mm/s and 1599 mm/s, and hatch distance 
was randomly adjusted between 0.07 mm and 0.15 mm. Layer thicknesses were selected 
in increments of 0.025 mm, encompassing 0.05 mm, 0.075 mm, and 0.1 mm. In the 
manufacturing process, the parameter combinations were randomly positioned on the 
build platform. Three process parameter combinations were consistently produced in 
close proximity to each other, utilizing the skip layer function to enable the construction 
of all four layer thicknesses in a single process. To minimize heat transfer effects between 
combined parameter combinations, a small gap was maintained between the three 
sections, with minimal contact at the bottom. Following the printing process, specimens 
underwent embedding, grinding, and polishing, culminating in microscopic imaging. 

We also created new dataset of human annotated pores so we cut the images of 
different pore types as you can (see Figure 1) a bunch of images that shows three types of 
pores with total of 200 pores for each pore type. This dataset was used for statistical 
computations of the pore characteristics. 

   
(a) (b) (c) 

Figure 1. The extracted pore types as: (a) Process pores; (b) Keyhole (Gas) pores; (c) Lack of Fusion 
pores. 

2.2. Preprocessing and Features Extraction 
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The initial data preparation involved vertically slicing specimens to create 
micrograph image scanning (see Figure 2a,b). Within these micrograph images, 
discernible porosity defects resulting from the manufacturing process were observed. To 
analyze various pore types, we initially converted the color images to grayscale, unifying 
image intensity within a single channel thus streamlining subsequent image processing 
and analysis. Subsequently, binary thresholding and post-cropping were applied using 
the OpenCV library [16] (see Figure 2c). Following this, we employed the same image 
processing approach to identify pore contours, utilizing an iterative bounding box method 
based on the algorithm detailed by Satoshi Suzuki and others in [17] (see Figure 2d). These 
identified pore contours allowed the extraction of local features, such as pore area and 
position, angle, as well as shape descriptors like solidity, circularity, and convexity (see 
Figure 2e). 

(a) (b) (c) (d) (e) 

Figure 2. Illustration of the pre-processing and feature extraction pipeline (a) SLM (b) Micrograph 
slicing (c) Image binarisation (d) Contour and ROI Marking (e) Pore characterisation and 
classification. 

2.3. Machine Learning Classifiers 
ML algorithms applied to images commonly perform two tasks: (1) Region-of-

Interest prediction and geometric feature and contour approximation (2) Classification of 
ROI areas or the entire image. ML algorithms are typically pure data-driven, requiring a 
solid database, which bases in engineering mostly on measurements and experiments. In 
our work, we try to combine data-driven with model-based approaches, and to use 
primarily models with low complexity. 

2.3.1. Random Forest Classifier (RF) 
The Random Forest (RF) algorithm is a powerful and widely used classification 

supervised machine learning method [18,19]. RF builds multiple decision trees, combining 
them as weak classifiers using “bagging” [20]. The RF classifier creates several decision 
trees, which are combined to improve the outcomes. It uses majority voting technique to 
decide the final outcome from the various decision trees. In a Random Forest model, each 
decision tree relies on values from a randomly selected vector with the same distribution 
[18]. This classifier has many parameters, e.g., maximum features, n-estimators, minimum 
samples split, minimum samples leaf, and maximum depth. Most of the parameters were 
the default algorithmic and model parameters using the scikit-learn software package 
[21]. Only one selectable parameter was optimized by grid search which is the number of 
trees (we used n-estimators = 100). The RF is used in this work as mapping algorithm that 
maps geometric model-based pre-computed latent features on classification features (pore 
classes). The input feature vector of the RF model are aggregate variables derived from 
the micrograph input image. The kernel-based aggregating filter operators can be freely 
chosen, e.g., mean, Gaussian blurring, or Sobel filters. A broad of set of filters were applied 
and the best were selected by feature ranking, mainly edge and shape boundary 
amplifying detectors. 
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2.3.2. Semantic Pixel Classifier 
A pixel classifier is applied to sub-images (mask window) of an image to predict the 

class of the central pixel of the current mask window, as illustrated in Figure 3. A variant 
is a segment classifier. The input image is segmented and the classifier is applied to each 
segment annotating the entire segment (not suitable for pore annotation). If the window 
mask is moved over all pixels of the input image, an annotated semantic class feature map 
output image can be created. The pixel classifier can be implemented by the 
aforementioned RF or CNN models, introduced in the next sub-section. Semantic pixel 
classifier, e.g., based on CNN architectures, were already successfully deployed for image 
feature segmentation, e.g., for defect detection in X-ray images [27,28]. 

 
Figure 3. Pixel classifier principle using a CNN (alternatively replaced by the proposed RF 
approach). 

2.3.3. Convolutional Neural Network (CNN) and U-Shaped Neural Network (U-Net) 
Convolutional Neural Networks (CNNs) [22] are widely used models deployed in 

image recognition and feature extraction tasks. CNNs are used for tasks like image 
classification and object detection. They operate by making predictions at both the image 
and object levels, focusing on tasks such as assigning labels or bounding boxes to entire 
images or objects within them. 

U-Net, a multi-level and complex CNN architecture with automated embedded or 
separated ROI proposal algorithms often used for automated image segmentation and 
ROI search, particularly in medical analysis, features a U-shaped design, with encoding 
and decoding paths connected via a central bottleneck (based on Auto encoder principles). 
It excels at capturing fine-grained spatial information in images and has proven effective 
in tasks such as medical image segmentation. Designed by Ronneberger and colleagues 
in 2015, U-Net specializes in image segmentation, classifying each pixel. It’s tailored for 
scenarios with limited training data and avoids substantial resolution reduction. 
Importantly, U-Net and similar architectures tackle a significant computer vision 
challenge by delivering better performance with smaller training datasets. But if the 
model complexity raises, the required training data instance volume and their variance 
must be increased significantly to achieve suitable generalized and robust predictive 
models. This extended and large data base is not available in this work. This capability is 
especially valuable in scenarios where amassing extensive labeled data is impractical [23] 

Hyper-parameters tunable in both CNNs and U-Net encompass learning rate, batch 
size, layer count, filter size, activation functions, pooling size, and loss function, 
influencing network performance and training progress. 
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2.4. Performance Metrics 
Metrics are used for the assessment of the machine learning model’s performance 

throughout training and testing. The model assessment metrics considered in this work 
are as follows [24]: 

Accuracy quantifies the model’s performance by dividing correct predictions by total 
predictions, either averaged for all classes or for individual classes (1-error). The Standard 
Error of the Mean (SEM) measures how the sample mean differs from the actual 
population mean. σμ = σ/√k, where σ is the standard deviation of the results and k the 
number of runs. Precision (Positive Predictive Value): Gauges the classifier’s bias toward 
false positives. Recall (Sensitivity): Indicates the classifier’s bias toward false negatives; 
low recall implies numerous false negatives. F1-Score (F-measure): Harmonic mean of 
accuracy and recall, combining precision and recall. The segmentation performance is 
quantified using Mean Intersection over Union (Mean IoU), which measures the 
percentage overlap between predicted and true segmentation masks. Traditionally, an 
IoU value exceeding 0.5 is regarded as indicative of ‘good’ segmentation [25]. 

3. Experimental Design 
In this section, we elucidate our Machine Learning pipeline, illustrated in Figure 4, 

designed for pore detection and analysis, subsequently leading to the prediction of 
diverse pore types. The training process utilizes input image(s), from which we extract 
pixel-based features employing different filters: Canny, Roberts, Sobel, Scharr, Prewitt, 
Gaussian, Median, and Variance filters. Different kernel sizes employed for these 
operations were investigated: 3 × 3, 5 × 5, 25 × 25, and 50 × 50 pixels. In our supervised 
machine learning (ML) approach, annotation is essential for distinguishing between 
various pore types. To accomplish this, we applied classical image processing algorithms, 
as detailed in Section 2.2 of our study. This tool facilitates the iterative detection of object 
(pore) contours and then derives different features such as aspect ratio, area, and 
convexity, as elaborated in Section 2.2. Drawing upon statistical analyses of pore 
characteristics conducted using the data presented in Figure 1, we formulated criteria for 
pore classification, an example of which is documented in Table A2 in Appendix B. These 
criteria are structured as an if-else logic system, enabling the classification of diverse pore 
types based on their statistical attributes. This classification scheme, as depicted in 
Appendix B Figure A1, encompasses process pores, gas or pore keyholes, LOFs, and 
another category. It is worth noting that our dataset lacks information on cracks. 
Consequently, our RF classifier is configured to predict four classes: 0 for background, 1 
for LOF pores, 2 for keyhole pores, and 3 for process pores, aligning with the available 
data characteristics. Subsequently, following the conditions outlined in Figure A1 in 
Appendix B, we assign labels to the pores and employ this information to generate a pixel-
based mask, effectively attributing each pixel to its corresponding pore. This mask is then 
input into the RF classifier. Finally, the classifier’s performance is assessed with new 
testing images, yielding predictive accuracy. In Appendix B, Figure A2 depict examples 
of the input image, labeled image, and predicted image, respectively. 



Eng. Proc. 2023, 56, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. (Top) RF-based model pipeline. Input is a sub-window from the original input image at a 
specific index position x,y (Bottom) Feature vector generation and local pixel aggreagtion. 

The CNN model used in this work employs two or three Conv2D-MaxPooling2D 
layer pairs for feature extraction and classification, typically with 4–8 filters in each layer 
using a filter mask size of 5 × 5 pixels. ReLU (Rectified Linear Unit) activation functions 
are applied throughout the network to introduce amplification of positive features and 
damping of negative latent features and enhance feature separation capabilities. The 
objective of this architecture is to classify each pixel in the input images into one of four 
classes: background, LOF pores, keyhole pores, and process pores, creating a feature map 
image. 

We also utilized the U-Net architecture, which is designed for pixel-level 
segmentation tasks, as introduced by Ronneberger et al. in 2015 [26]. U-Net’s distinctive 
features include an encoder (down-sampling) and decoder (up-sampling) CNN 
framework (see an example of this model architecture in Appendix C Figure A3), skip 
connections linking encoder and decoder layers, transposed convolution for up-sampling, 
and crop-concatenate for contextual information integration, concluding with a 1 × 1 
convolution layer. In comparison to standard CNNs with broader applications in 
computer vision, U-Net specializes in pixel-level image segmentation and ROI detection. 
Our custom U-Net design incorporates five Conv2D layers for down-sampling (64 × 64, 
32 × 32, 16 × 16, 8 × 8, and 4 × 4) and four Conv2DTranspose layers for up-sampling (4 × 4 
to 8 × 8, 16 × 16, 32 × 32, and 64 × 64), interconnected through skip connections, culminating 
in a Conv2DTranspose layer with a 3 × 3 kernel to achieve a 128 × 128 resolution. Loss and 
activation functions are customizable, with categorical cross-entropy and ReLU often 
chosen. Our model aims for precise pixel-wise classification. 

4. Results and Discussion 
In our study, we trained a Random Forest (RF) model using up to 10 Million class 

imbalanced training samples (i.e., pixel vectors, background pixels are the majority), as 
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detailed in Section 3, using a progressive approach where we employed an increasing 
number of ten images randomly selected from our dataset and tested with all these ten 
images. This approach was adopted due to the non-normal distribution of accuracy 
results, leading us to calculate the standard error of the mean (SEM) as a more robust 
measure, representing one standard deviation. Training the model with eight images 
achieved lower SEM of testing the model. The model’s overall average test accuracy across 
all classes, along with its SEM, was determined to be 77% ± 1% (refer to Figure 5a). Since 
the background class is trivial in this use case, the three-class average accuracy is about 
76%. Notably, the model achieved a maximum test a curacy of 82% among the ten tested 
images. When trained with eight images, the model demonstrated an overall average test 
precision of 67%, recall of 77%, F1 score of 69%, and an impressive Area Under the Curve 
(AUC) of 99.7%. The class-specific accuracy is not homogeneous. Only the LOF class, 
which was the majority class in the initial training sample distribution, can be clearly 
identified. We repeated the training with a balanced training set, but without significant 
improvement, concluding that the RF training is insensitive to imbalanced training 
examples. 

  
(a) (b) 

Figure 5. (a) Overall averaged accuracy of RF classifier vs. increasing number of training images, 
(b) each class averaged accuracy of RF classifier vs. increasing number of train images. 

A comprehensive breakdown of individual class train and test accuracies can be 
found in Figure 5b. Notably, the model excelled in predicting classes with larger pixel 
counts, such as the LOF pore type, as exemplified in Figure A2c, where a predicted image 
is showcased. The decrease of the overall model prediction accuracy of the training data 
and a parallel increase of the test data accuracy with increasing number of training images, 
as shown in Figure 5a, is an indicator for the high variance (class distribution and 
geometric variations) of particular images. 

We trained the CNN with a moving input window size of 20 × 20 pixels (with about 
10,000 training examples) as well as the RF with eight images and test the model with all 
the ten images. The results, as summarized in Table 1, show that CNN model that is 
described is not performing well, too. After 30 training epochs with a training rate of alpha 
= 0.01, we get a total accuracy on the test set (70% of the entire image segment data base 
consisting of 27,000 segments) of about 80%, but classes Keyhole and LOF pose an 
individual error of about 30–40% due to misclassification (mostly overlapping 
classification of these classes). Only the process pore class (with its small geometric size, 
see Appendix for details) can be detected with a low error (about 6%). The error is an 
individual pixel classification error without considering neighboring pixel results. After 
pixel feature classification a pixel clustering (DBSCAN) can be applied. Spurious 
misclassification can be suppressed by clustering, resulting is much lower pore-wise 
classification error. 
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Table 1. Summarized comparison of the accuracies for the three approaches considered in this work 
(FC: False classification). 

Class\Method RF CNN U-NET 

Class Process Pore 
54% 

(40% Keyhole FC) 93% 50% 

Class LOF 99% 
60%  

(25% Keyhole FC) 5% 

Class Keyhole 75% 
(20% Pro FC) 

65%  
(25% LOF FC) 20% 

Total 76% 73% 25% (failed) 

The RF and CNN models rely on a divide-and-conquer principle posing low model 
complexity. For comparison, we employed a complex U-Net model that also described in 
Section 3. The training process was not suitable to create a usable model as shown in 
Figure A4. The predicted images still look different than the labeled images as can be seen 
in Figure A5 (a: input test image, b: labeled image and c: the predicted labeled image). The 
model was trained with eight images resulting in a train and test data set accuracy of 54% 
and 25%, respectively, i.e., the training failed completely, basically due to the limited 
training data set size (here only 8 different instances). 

As concluded in this section, the RF-based model performed slightly better than both 
simple CNN and the U-Net models for our task to predict different pore types. However, 
both RF and CNN can only predict one of the three pore class with high accuracy, two of 
three are not clearly distinguishable. The currently unusable U-NET needs to be tuned 
and data augmentation is important in order to improve the results. We emphasize the 
importance of employing data augmentation techniques such as geometric 
transformations involving random cropping, shifting, and rotation. These strategies hold 
great promise for enhancing classifier performance and advancing pore classification. 

The RF and CNN show different distributions of the per-class accuracy, so they could 
be combined to create a more robust class-specific classifier model. The misclassification 
noise, as illustrated in the images in Figure A2c–f, depends on the filter mask sizes. Too 
small masks reduce the spatial correlation and increases noise significantly, too large 
masks increase averaging and extended area misclassification (e.g., by multiple pores 
inside the mask). 

5. Conclusions and Future Work 
Our research has introduced a hybrid classifier model using model-driven feature 

selection combined with a RF classifier, a supervised machine learning model, designed 
to perform well even with limited training data. Comparing to purely data-driven models 
like CNN, our RF approach has demonstrated a competitive quality in pore classification, 
which can be trained with a highly class imbalanced training set without compromising 
accuracy. Both RF and CNN approaches used local data models of low complexity 
combined with a divide-and-conquer methodology. One major contribution is an 
automated feature annotation using classical image processing and iterative object search, 
finally providing shape boundary approximations and elliptical shape fitting. Based on a 
few characteristic features, the pores can be classified using a simple decision tree. The 
image processing approach depends always on a global context limiting parallelism, 
whereas the pixel classifier depends only on bound local data, enabling the usage of 
parallel Cellular Automata processing architectures. The U-NET approach uses a high 
complex and deep functional graph model, not suitable to be trained with only a few 
images like done in this work. 

The major advantage of the model-driven over the pure data-driven approach is the 
explainability and tractability of the model, i.e., a correlation between classification output 
and geometric features that are amplified by the selected filter operators. Finally, the RF 
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approach showed low sensitivity to highly imbalanced data sets with respect to the target 
class distributions. 

Given the challenges in gathering micrograph data, we emphasize the importance of 
employing data augmentation techniques such as geometric transformations involving 
random cropping, shifting, and rotation. These strategies hold great promise for 
enhancing classifier performance and advancing pore classification. 

In future work, we aim to: 
• Using a semantic pixel clustering based on DBSCAN to improve pore classification 

by majority decision and to derive ROI boundaries of the pores; 
• Enhance the RF- and CNN-based micrograph data classification model, finally fusing 

these model to create a more robust meta model; 
• Develop a forward ML model for predicting mechanical properties; 
• Create an inverse ML model for predicting AM process parameters. 
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Appendix A 

Table A1. Summary of the pore types. 

 Defect Type Characteristics Geometric Features Material & Mechanical 
Properties 

 

Keyhole pore [6,7] 

Vapor bubbles trapped in melt 
pool during printing and 

vaporized metal at high local 
temperatures or merge process 

pores 

Keyhole-like voids, 
channeling 

Reduced mechanical strength, 
reduced fatigue resistance, 

susceptibility to crack initiation 

 

Gas pore (circular 
keyhole) [8] 

Vapor bubbles trapped in melt 
pool during printing (or merge 

process pores) 

Irregular 
distribution, 

spherical 

Decreased fatigue life, lowered 
mechanical strength, 

compromised surface finish 

 

Lake of Fusion 
(LOF) [8,9] 

due to insufficiently melted 
material 

Inter-layer gaps, 
unfused regions, 
not necessarily 

spherical 

Starting point for cracks which 
may grow further due to stress 

 

Un-melted particle 
(LOF) [8,10,11] 

due to insufficiently melted 
material 

(Inclusion of unmelted powder) 

Same as above but 
with unmelted 

powder trapped 
inside 

Starting point for cracks which 
may grow further due to stress 

 

Process pore [9] 
Low packing density of the 

powder, hollow powder particles 
and entrapped inert gas 

Irregular 
distribution, 

spherical with 
smallest area 

Less effect on the meterail 
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Crack [12] 

Fractures in printed layers or at 
interfaces or can be caused due 
failure induced by other pores. 

Large aspect ratio 
Biggest risk for initiating the 

mechanical failure 

Appendix B 

 
Figure A1. Automatic annotation procedure for the pore type classification. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure A2. (a) Example of an input micrograph image (b) Automatically labeled image where blue 
pixels represent the LOF pore, green Keyhole or gas pores, and red is the process pores, (c) Predicted 
pixel classification by the RF model with a filter operator mask of 25 × 25 pixels. (d) Another example 
(e) Automatically labeled image (f) Prediction using a 3 × 3 filter mask with noisy classification. 
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Table A2. The mean of area, convexity defects and aspect ratio features of three pore types. 

Pore Type Mean Area  
mm 

Convexity 
defects 

Aspect  
Ratio 

Process 8.59E-05 1.135 1.397 
Keyhole 0.018 23.750 1.211 

LOF 0.029 12.517  1.972 

Appendix C 

 
Figure A3. Example of U-Net architecture. The Blue tiles on the left hand side represent the Encoder 
(down-sampling) section of the network and the Green tiles on the right show the Decoder (up-
sampling) section [26]. 

   
(a) (b) (c) 

Figure A4. Results of using U-Net model (a) accuracy vs. increasing number of train images, (b) IoU 
vs. increasing number of train images, (c) each class accuracy vs. increasing number of train images. 

   
(a) (b) (c) 
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Figure A5. Results of U-Net model with eight images trained (a) test image, (b) labeled test image 
(c) predicted image. 
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